
WebManager: A Web-Based Network Management
Application

Jacques Philippe Sauvé
Departamento de Sistemas e Computação

Centro de Ciências e Tecnologia - Universidade Federal da Paraíba

Av. Aprígio Veloso, 882 - Bodocongó

58109-970 - Campina Grande - PB - Brazil

Email: jacques@dsc.ufpb.br

Abstract
The implementation of a three-tier, Web-based network management application called

WebManager is discussed. It is implemented in a UNIX environment, accesses management data
through SNMP and is written in perl and C. Its main features include a Web-based interface,
hierarchical network navigation maps, display of graphical statistics for any Management
Information Base (MIB) variable, automatic color status indications for devices and sub-networks,
full configurability and automatic alarms. This tool is currently being used in two production
environments to manage networks with hundreds of nodes.

1 Introduction
Traditional network management solutions based on centralized Network Management Stations

(NMS), running on UNIX environments and using the Motif Graphical User Interface (GUI) suffer
from many problems [1,2,3]. One of these problems is their high cost which runs to the tens of
thousands of dollars for anything but very small-scale networks due to the cost of the management
platform added to the cost of the management applications. A second and more important problem
is that of mobility: the management software is only available through the GUI on the NMS
hardware console. This lack of user mobility seriously hinders management tasks: network
managers want to access management applications from anywhere on the network, not just the
NMS console.

Web technology is being used to solve these two problems. The use of a Web browser as a
universal client to access management applications completely eliminates the mobility issue and
alleviates the costs incurred in the final solutions. Web-based network management solutions can be
grouped in four classes: two-tier solutions whereby an HTTP server is embedded in network
devices as a telnet replacement [4], three-tier solutions in which the applications' GUI is replaced
with a Web browser while maintaining the NMS [5], and, finally, two recent initiatives aiming to
replace the SNMP-based Internet Standard Management Framework with an object-oriented data
model and a new management protocol. These efforts are called Web-Based Enterprise
Management (WBEM) [6] and Java Management Extensions (JMX) [7].

This paper describes the implementation of a three-tier Web-based network management
application called WebManager. Section 2 presents the motivation behind the work, the objectives
and requirements of the solution. Section 3 gives a tour of the final product. We believe the rest of
the presentation will be clearer after the reader has had a chance to see the management application
in action. Section 4 provides implementation details and constitutes the main part of the paper.
Section 5 critically evaluates WebManager. Finally, section 6 concludes by indicating the ways in
which the solution is evolving.

2 Motivation, Objectives and Requirements

2.1 Motivation

Four motives led us to develop WebManager. In the first place, the author is currently
investigating Web-Based Management as an alternative to traditional management techniques. We
felt that implementing a tool would lead to a better understanding of the issues involved.

Secondly, we aim to use a future version of the tool as a platform for implementing
management applications as part of our research effort in fault and performance management of
computer networks. The current version of the tool is not yet usable in this sense since it is a
management application and not a platform. However, as explained further on, version 3 will be a
full management platform.

Third, our institution needs tools to implement production network management applications.
Before our solution was concluded, we were using a traditional, expensive, platform-based network
solution to manage our campus network. However, severe budget restrictions did not allow us to
expand the solution, buy and integrate new applications, deploy new management consoles, etc. We
therefore intended to build a production tool that could substitute this platform. While it is true that
the cost of the manpower involved can easily surpass the high cost of expanding the platform, one
has to keep in mind that, at a university, human resources are often more readily available than hard
cash. We understand that this may not be the case at other institutions.

Finally, we wanted to solve the mobility problem exhibited by the traditional approach. A
Web-based solution where the user interface is a Web browser is the natural way of solving this
problem, as can be seen by the number of intranets being deployed world-wide for all types of
applications.

2.2 Objectives

Our main objective was to implement a Web-based network management tool in three stages.
The first stage would be a basic management application used to try out some ideas and rapidly
become a production tool at our institution. This stage has now been successfully completed and has
met all expectations, goals and requirements. The second stage, currently under development, will
expand the first tool to make it much easier to configure, introduce better graphical representations
of the management data, make it cross-platform so the NMS runs on a Windows-NT server, and
package it as a shareware product to be offered on the Internet. The third stage, currently in the
requirements phase of development, will finally transform the product into a management platform
that will allow one to plug-in management applications especially developed for it.

This paper describes the result of the first stage of work which has been satisfactorily
concluded.

2.3 Requirements

The first stage, baptized WebManager Version 1, was implemented with the following
requirements in mind:
1. The solution should be a management application and not a platform. In other words, it is not

required that separate applications be able to plug themselves into the final result.
2. The solution must use the Internet Standard Management Framework and use the Simple

Network Management Protocol (SNMP), versions 1 and 2.
3. A Web browser must be the only tool available to access the application's interface.

4. The interface must allow for hierarchical network navigation through position-sensitive maps.
In other words, a high-level network map should show the whole network; clicking on a part of
the network should provide a new image for that part of the network, and so on.

5. The network maps need to show the status of each part of the network through an appropriate
visual mechanism such as a color code. This allows for a quick view of the presence and
location of any trouble spots in the network.

6. The application should basically allow Management Information Base (MIB) browsing with
access to historical statistics through daily graphs. Only monitoring should be allowed; in other
words, due to the weak security of SNMP versions 1 and 2, no active control of the network
should be done.

7. Graphs presented in the interface can be as much as one hour old. However, there has to be a
mechanism whereby up-to-date statistics can be obtained with a response time of at most 15
seconds for small networks.

8. Configurable alarms need to be provided. Alarms should be based on any mechanism able to
detect the crossing of thresholds in the value of MIB variables. Furthermore, the use of
arbitrarily complex expressions of MIB variables to generate alarms is desirable. An arbitrary
command (such as sending mail) should be configurable as an alarm’s action.

9. Configuration of the tool can be done manually with a text editor. However, the configurability
must be very high. The whole solution must be data-driven, with no topological information or
visual element coded into the programs. This includes HTML pages, graphs, network maps, etc.

3 Using WebManager Version 1
This section leads the reader through a quick tour of the final solution. We believe this to be

the most efficient way of describing the tool before dealing with its implementation in the next
section. The advantage is that this approach is much less tedious than giving a full or even partial
product specification.

Pointing the browser at the starting Uniform Resource Locator (URL) yields the image shown
in Figure 1. This figure shows a screen shot of the Web browser. The main part of the screen is a
network map showing the whole network composed of four sub-networks, a firewall, a router and
the internet. Each part of he network has a small dot whose color indicates the operational status of
that part of the network. The small hub doesn't have such a dot as it is not a manageable device (it
doesn't speak SNMP). The top part of the screen exhibits two links pointing to summary reports for
the network. We will have more to say about these reports later. Finally, the bottom part of the
screen allows the operator to purge old statistical graphs and old data from the system.

Figure 1 shows, through a red dot, that the Main Office part of the network has a problem.
Since the network map is position-sensitive, clicking on the Main Office displays the screen shown
in Figure 2. This screen shows the Main Office part of the network and shows that there is a
problem with the connection to the Remote Access Server (RAS). Clicking on the Main Office
Stackable Hub yields Figure 3 which shows that the fifth repeater group has a problem.

Finally, clicking on group 5 leads to the screen of Figure 4 showing that port 19 is down. It
should be clear from these screens that network device status has actually propagated up the
hierarchy so that, for example, the top image (Figure 1) shows that network problems exist at lower
levels.

After navigating through network maps, one finally reaches the "leaves" of the network
hierarchy: network devices and interfaces. By clicking on the image representing the device (or the
small dot indicating the status of a link), a screen similar to Figure 5 is shown. The screen shown
here is for a 256 Kbps Wide Area Network access link. The screen has two frames: the top one

shows the hardware name, operational status, alarms, etc. The second part of the screen shows
several thumbnail graphs of statistics for several days (usually the last 5 days). Scroll bars (not
shown here) allow one to access all statistics for all available days. Finally, a full graph may be
exhibited by clicking on any thumbnail. For example, Figure 6 shows the percentage of collisions
obtained from a Remote Monitoring (RMON) probe on an Ethernet. The graph clearly indicates that
the network should be segmented, since the percentage of collisions is well above the recommended
maximum of 5%.

Figure 1: The Whole Network as Seen by WebManager Figure 2: Main Office Part of The Network

Figure 3: Main Office - Main Stackable Hub Figure 4: Repeater Group 5

Several of the graphs show Update and other buttons that a activate Common Gateway
Interface (CGI) program used to update all values, images and graphs shown on the screens.
Another important function which is not shown on the screens is that any alarm detected causes an
action to be executed. For example, a mail message could be sent to a network operator.

Fig. 5: Thumbnail Statistical Graphs of a WAN Link Fig. 6: Percentage of Collisions from an RMON Probe

4 Implementation Details
This section discusses certain details of the WebManager implementation. Specifically, we

cover the architecture, the name space for managed objects, network device monitoring, and both
offline and online HTML page construction.

4.1 WebManager Architecture

WebManager's architecture is a typical three-tier Network Management Station (NMS) [5] as
seen in Figure 7. The first tier consists of network devices such as routers, hubs, switches, etc.
containing SNMP agents. The second tier is the NMS. It obtains data from tier one and stores it in a
database. At appropriate times, this data is converted to HTML format (as well as GIF and MAP
files) which allows the browser in the third tier to access the management information.

Figure 7: WebManager Architecture Figure 8: Managed Object Monitoring

The various parts of Figure 7 are described in more detail further on. A brief description
follows. The program called webmngrmon.pl (WebManager Monitor) runs permanently in the
background and periodically polls the network devices using SNMP and stores the MIB variable

values in a database. It also checks whether alarms have occurred (variable values may have crossed
thresholds, for example) and takes appropriate actions when they do. The program called
webmngrbuild.pl (WebManager Builder), on the other hand runs once an hour (through the
UNIX cron facility) and converts the database values into appropriate HTML pages, GIF images
(network maps, thumbnails and full graphs), and HTML MAP files (for position-sensitive GIFs).

For the sake of simplicity, Figure 7 does not show the CGI program which is also part of the
NMS. A CGI program allows one to include some interactivity in the user interface. It is through
the CGI that images, status values, graphs, etc. may be updated at any time through the operator's
browser. The CGI works by simply calling webmngrmon.pl and webmngrbuild.pl. The
fact that the CGI program calls these two programs is the only reason for having all programs from
the second tier running on the same machine (the NMS). Otherwise, since communication between
webmngrmon.pl and webmngrbuild.pl and the rest of the system is through files, these
programs could have run on separate machines connected through a distributed file system.

4.2 Name Space for Managed Objects

Two requirements from section 2.3 lead to the adoption of a hierarchical structure for naming
the managed objects. These are the need to offer hierarchical network navigation through maps and
the need to propagate status information (the colored dots) along this hierarchy. For this reason, all
managed objects are organized in a hierarchy. Using the "!" as a hierarchy separator, section 3 has
navigated to the following HTML pages: !.html (the root of the hierarchy containing all managed
objects), !main.html (containing all objects from the main office), !main!mainhub.html
(containing all objects below the main office's main hub), !main!mainhub!group5.html
(containing everything in the fifth repeater group of this hub),
!main!mainhub!group5!port19.html (a leaf object in the hierarchy which was not visited
in the tour), and so on.

As said above, this hierarchy allows the proper propagation of status information. When port
19 goes down (its status becomes red), a red dot will appear on port 19 and will be propagated up to
also appear as the status of the aggregate objects !main!mainhub!group5,
!main!mainhub, and !main. Furthermore, this hierarchy is used when clicking on the update
button on any HTML page. The update must include all objects of the hierarchy situated on or
below the object under consideration. For example, clicking on the update button of Figure 3 would
force webmngrmon.pl to poll all ports on all repeater groups for the hub, the hub itself and the
Ethernet network interface. webmngrbuild.pl would then be used to update all HTML pages,
maps and images for these objects and all network maps above these objects in the hierarchy (to
propagate visual status information).

4.3 Managed Object Monitoring

This section describes the webmngrmon.pl program and how it interacts with other
components of the architecture.

4.3.1 General comments
webmngrmon.pl monitors network devices1 through the SNMP protocol at configured

intervals, usually around 5 to 15 minutes for critical devices and 60 minutes for less critical ones.

1 Actually, anything with an SNMP agent and MIB support can be monitored, including HTTP servers, DNS
servers, database servers, printing systems, UPS, etc.

The values obtained from the devices are stored in a database. Observe that webmngrmon.pl
does not interface directly with the user and does not produce any GUI output. A second task
performed by webmngrmon.pl is to check for alarm conditions and perform suitable actions
when such alarms are set off. webmngrmon.pl is written in perl. It is started on the NMS at boot
time and runs in an endless loop. Figure 8 shows details of its operation and interaction with other
components of the architecture.

4.3.2 Configuration file
All of WebManager's configuration is contained in a single text file. This file is edited

manually in this version of the product. This means that the devices to be monitored, the MIB
variables to poll for each device, etc. are all statically defined in this file. It is thus not currently
possible to use WebManager as a dynamic MIB browser, in the sense of dynamically choosing
which MIB variable to poll for, with what frequency, etc. The configuration file will not be fully
described here. The following list of items contained in the file and related to the monitoring task
will be sufficient to give a general idea.

• Installation information such as file and directory names.
• Equipment classes such as Cisco routers, Ethernet interfaces, Repeater Groups, etc. along

with the MIB variables to be monitored for each class of equipment.
• A description of physical devices in the network topology.
• A description of logical devices along with their criticality, polling frequency, and

corresponding physical devices. Observe that separating physical and logical devices allows
one to inquire about, say, the "Internet Access Link" without worrying about the physical
router port used. If the router port is changed, the operator would still ask about the "Internet
Access Link" and wouldn't be aware of the port change.

• A description of alarm levels, actions and specific alarms to test for.

4.3.3 SNMP commands
When it needs to access the network devices using SNMP, webmngrmon.pl uses the CMU

SNMP package [8]. This package includes the snmpget command which retrieves MIB variables
using SNMP's "get" operator and the snmpwalk command which does the same but using SNMP's
"get-next" operator. snmpget is used to get simple variables while snmpwalk is faster when
retrieving whole MIB tables. This is be the case, for instance, when retrieving information about all
of a router's interfaces with a single command.

4.3.4 The historical management data store

After retrieving MIB variables using the CMU SNMP package, webmngrmon.pl stores the
results in a database for further processing. For the moment, we are using simple text files to hold
this data, since the networks being managed are still reasonably small and since storing the
information as text allows easy parsing in the perl language. Separate files are used to hold the data
for each separate day of monitoring. Each record contains a time stamp as well as the values of the
MIB variables polled. Some pseudo-MIB variables are also polled and stored in the database. This
includes, for example, the "ping" variable indicating the round trip time to the managed object in
milliseconds, the "snmpup" variable indicating whether the SNMP agent is responding, and so on.

Values obtained from the network devices are stored in the database once every hour. For some
MIB variables, the values obtained are averaged over the last hour before being stored. This would
be the case for, say, measures of free memory, values for ping, etc. For other MIB variables (uptime
or cumulative error counts, for example), the last value obtained is stored. In other cases, both an

average and the last value are important. Consider the value of a communication link's operational
status. The average value indicates the fraction of time the link was up over the past hour while the
last value indicates the last known status: both measures are important.

4.3.5 CGI support
Recall that webmngrmon.pl runs permanently in the background and periodically polls

devices. Let us call this the "normal" execution of webmngrmon.pl. But we also know that the
CGI program must call webmngrmon.pl to update values at the operator's request. This is done
by having two special arguments accepted by webmngrmon.pl and used when it is called by
CGI. The first is a flag (-u) which indicates that webmngrmon.pl should run only once and exit.
The second is a list of arguments saying which particular devices should be polled. In this way,
webmngrmon.pl may be executed through the CGI while the normal execution goes on. The
normal execution will poll all devices regularly while the second execution (through the CGI) will
poll only those few devices necessary to update the current HTML page and then exit.

4.3.6 Support for alarms
Since the first version of WebManager does not support asynchronous SNMP traps, alarms are

detected by webmngrmon.pl through the normal synchronous polling process. Alarms are
configurable in two ways. First, several severity levels with associated actions may be given in the
configuration file. This is shown in the following example configuration description taken from the
configuration file.

ALARMS
 DEFALARM Critical "mail netop@acme.com"
 DEFALARM Normal "cat >>/web/webmngr/log"
 DEFALARM Ignore "cat >/dev/null"
 ALARM !main!mainrouter
 ALARMTYPE Critical
 ALARMTEST &StatusDown("!main!mainrouter")
 ALARMMSG $ObjectName{"!main!mainrouter"} . "is down"
ENDALARMS

This information defines three alarm levels and the associated action. For example, when a
critical alarm occurs, a mail message will be sent to the netop user. The example also defines a
single alarm associated with the logical object !main!mainrouter. The ALARMTEST line
indicates what boolean condition must be met to set the alarm off. In this case a perl function
(StatusDown) is called. This function, is part of webmngrmon.pl and checks to see whether
the status of the object has gone through a transition from "up" to "down". The mail message
received by the network operator is defined in the ALARMMSG line. ObjectName is a perl array
containing the full name of all objects. It is important to observe that the configuration file contains
perl code in certain choice locations. For example, we decided that the most general way of
handling alarm conditions would be to embed any perl expression in the configuration file. These
perl expressions are evaluated at run time and can access any of the variables and functions in the
webmngrmon.pl program. This is exactly what can be seen in the above example.

4.4 HTML Page Construction

This section describes the webmngrbuild.pl program and how it interacts with other
components in the architecture.

4.4.1 General comments

Up to this point in the discussion, we may assume that webmngrmon.pl has loaded the
database with historical values for MIB variables (all entries in the database are timestamped). The
second major component of the WebManager architecture is webmngrbuild.pl which is
responsible for transforming this data into a Web interface using HTML, image maps and GIF files
representing network maps as well as thumbnails and full graphs. A browser is then used to access
the resulting files. The webmngrbuild.pl program is written in perl and runs on the NMS once
an hour through the UNIX cron facility. It thus produces its results offline. Figure 9 shows a
detailed view of the webmngrbuild.pl component and its interfaces inside WebManager.

Three types of information must be produced by webmngrbuild.pl and correctly installed
as Web pages in the management Web site. They are: HTML pages, network maps and statistical
graphs. We consider how to produce each of these in turn.

Figure 9: Construction of HTML Pages and Associated Information

4.4.2 Producing HTML pages
The HTML pages accessed by a browser, a few examples of which were seen in section 3, are

not static pages. For this reason, HTML templates are used to produce the pages. For example, from
hour to hour, the times given on the pages will change. If the status of a device changes, the GIF file
indicating the status may change from, say, "greendot.gif" to "reddot.gif". Furthermore, from day to
day, the daily graphs exhibited will change completely. As a result, the HTML pages exhibited are
constantly changing. A stronger reason for using templates is that several devices may be very
similar (consider two routers of the same model) and would have their pages produced from a single
template. Using templates was dictated by the requirement to have a data-driven solution. The data
comes from the configuration files, template files and the data base containing management data
values. webmngrbuild.pl processes all this data and produces the final HTML pages.

In order to generate the variable data inside HTML pages, perl code was embedded in the
HTML template files. In other words, by processing and expanding the HTML file,

webmngrbuild.pl will actually call any appropriate perl functions used to prepare whatever
visual object may be needed by the HTML file. This is a very powerful mechanism and has
drastically simplified the development effort and made maintenance an order of magnitude simpler.

A measure of this technique's success may be judged when one considers that, in a production
system using WebManager, a mere 15 templates are used to generate the more than 10000 HTML
files present on the Web site to manage a 500-node network with 200 managed objects.

4.4.3 Producing network maps
We have said above that the BuildMap function is responsible for producing network maps

such as those shown in Figures 1 to 4. This section describes how this important function works. A
network map is made up of a GIF file containing the image and an associated MAP file indicating
where the hotspots are located on this image and what URLs are associated with those hotspots. Let
us see how each of these files is built, in turn.

In order to build a GIF file, a BMP (bit map) file is first constructed. It is then converted to the
GIF format using the netpbm package [9]. The BMP image is constructed through a program called
bmpconstruct, written in C and called by webmngrbuild.pl according to instructions
contained in the configuration file. This bit map constructor program basically knows how to build
a larger BMP file from small ones.

The small BMP images may be associated with managed objects or not: in Figure 1, all small
images are thus associated except for the "WebManager" image (added for the pleasing effect) and
the hub image (this hub is not SNMP-manageable). When the images do represent managed objects,
the bmpconstruct program may be told to change one color to another in order to reflect the
device's status. For example, the same small BMP image was used for "BLDG 7" and "MAIN
OFC"; but since the MAIN OFFICE has a red status to indicate a problem, bmpconstruct was
told to add the small BMP and change all green pixels to red. This is how the network maps are
made to dynamically reflect network status. Finally, bmpconstruct also can add visual sugar to
the image. This includes text (in several sizes and colors), lines, boxes, etc. Finally, after the BMP
file is ready, commands from the netpbm package are called to convert to GIF.

The second file needed for a network map is the MAP file indicating rectangular areas and
associated URLs for all hotspots on the image. webmngrbuild.pl builds this file as it sets up
the call to bmpconstruct.

We believe that the approach taken shows the power of the UNIX tools approach. Many small
but well-thought-out commands are used in conjunction to produce the desired result. More
importantly, all this image construction is done automatically, without human intervention. Finally
note that everything described here is data driven; the results can be changed by editing only the
configuration file and HTML templates.

4.4.4 Producing statistical graphs
Statistical graphs, shown as thumbnails in Figure 5 and as a full graph in Figure 6, are one of

the most important aspects of WebManager's interface. These graphs can give a clear idea of trends,
can be used for capacity planning and may be used to find recurrent problems in the network.
WebManager can be used to produce daily graphs for any MIB variable such as uptime, packet
errors, bandwidth consumption, resource utilization, etc. In order to produce graphs such as the one
shown in Figure 6, webmngrbuild.pl extracts the appropriate data from the database and
produces a data points file with x-y values for the desired curves. The curve drawing program
gnuplot [10], called by webmngrbuild.pl, reads the data points and produces a Portable

PixMap representation of the graph. The netpbm package then converts this image to the GIF
format.

Once more, the power of the tools approach is apparent. Many commands (gnuplot,
ppmtogif, giftopnm, bmptoppm, pnmscale, ppmquant) are combined to yield the desired
effect and do not require human intervention to produce the results.

4.4.5 Online HTML page construction

The Web interface includes Update buttons that may be used to update all information shown
on the HTML pages, network maps and graphs. A CGI program, called webmngr.pl.cgi, is
used to respond to these requests. It is also written in perl and basically works by calling
webmngrmon.pl to update the database and webmngrbuild.pl to update the visual
information. Updating may be applied to a single object (say a router) or to a whole section of the
network (the whole Main Office, say).

5 A Critical Evaluation of WebManager
We feel that it is important to tally up our experience with WebManager and point out its

strong points as well as its defects. Such an analysis will allow others to better learn from our work.

5.1 WebManager's Strong Points

On the implementation side, writing the 4000 lines of C/perl/HTML code was very fast. This
is due to the use of the perl language, which is excellent in every way in dealing with applications
involving text processing and this is what most of the work actually is. Using HTML template
expansion with embedded perl code was also beneficial to the effort. Architecturally, the
webmngrbuild.pl program is nothing more than a management application and it is relatively
straightforward to write other applications.

WebManager has been used to manage two networks so far totaling 500 nodes and 100 nodes,
about half of which are managed objects. It has proven useful as a management tool, especially with
respect to graphical MIB browsing. We have already discovered many weaknesses of these two
networks through the tool, as indicated by Figure 6 which was taken from actual operation. By
spending some time in properly defining alarm conditions (which WebManager makes very
general), reasonably automatic network management can be achieved, especially with respect to
fault identification and performance management. The device configuration aspects of
WebManager are non-existent but the HTML pages can easily include URLs to access embedded
HTTP servers in the devices and thus access configuration pages provided by device manufacturers.
In such a case, using telnet becomes a thing of the past.

With respect to speed, the pre-calculation of HTML pages, network maps and images allows
very responsive browsing although the load on the NMS to generate this information is heavy for
larger networks.

5.2 WebManager's Weak Points

From an implementation perspective, we made a mistake in imposing a hierarchical structure
on the managed objects. A general graph rather than a tree would have been more useful. The lack
of a MIB compiler forces the developer to provide more configuration information than is
necessary, but this was a imposed by the short time span available to develop the tool. We feel that
the statistical graphs part of WebManager is still too weak since it does not easily allow one to
graph curves other than straight MIB variables. More general calculations should have been

possible. The method used to embed perl code in HTML templates should be redone and should use
more general mechanisms such as extensible tags rather than magic cookies. Also, Java applets
would have given us a more responsive interface although this also was precluded by time
constraints. Finally, no aspects of security were considered while drawing up the requirements and
the final solution suffers from this omission.

As far as usefulness for network management is concerned, WebManager suffers from a major
fault: configuring the product for a particular network topology is extremely time-consuming. As an
example, the configuration file for one our small networks is 2500 lines long. The process would be
much improved by using auto-discovery tools and a graphical network map editor such as described
in [11]. Better graphs should be available, especially when one wishes to combine statistics from
several devices on the same graph for comparison purposes. Another weak point is that alarm
correlation is not performed by WebManager. As an example, should the MAIN OFFICE HUB of
Figure 2 go down, tens of alarms would go off at the same time with no clear indication of the
common cause. Finally, no support for SNMP traps was provided and this could be used
advantageously to minimize the normal polling traffic.

An evaluation of the speed of the tool indicates that updating the status for the whole network
through he CGI may take tens of minutes for a medium-size network. This could be substantially
minimized if threads could be used. As it stands, WebManager does not scale well, although this is
mainly due to the SNMP-based framework which imposes the concept of a centralized NMS.

6 Conclusions
WebManager is a three-tier, Web-enabled and SNMP-based network management tool. It is

currently being used to successfully manage two networks with hundreds of nodes. We are
currently working on a second version of the tool. Our main objective is to build-in enough quality
to make it useful to third parties. If we are successful, we plan to offer WebManager as shareware
on the Internet. Building in the proper amount of quality is a demanding challenge. As a first step,
the tool must be extremely easy to use, especially to install and configure, and we are still quite far
from that goal. Furthermore, the tool will need to have a more dynamic interface and we plan to
achieve this by the judicious use of Java applets. In fact, most of the negative points mentioned in
section 5 will be removed. Finally, we intend to make WebManager platform independent, allowing
it to run on various flavors of UNIX and on Windows NT. Version 3 of the product is currently in
the requirements stage. It will be component-based allowing applications to be built visually.

References
[1] R.L. Ptak, “Managing Complexity Trends and Issues in Distributed Management”, On-line, URL

http://www.summitonline.com/netmanage/papers/brown2.html.
[2] C. T. Corcoran, “Managing Network Ills Network Managers Tackle Management-Tools Deficiencies With Web

Technologies”, InfoWorld, 18(42), 1996.
[3] M. Smith, “Enterprise Management Glue”, On-line, URL http://kinetworks.ki.com/WBEM/emglue.html.
[4] D. Hyde, “The New Paradigm for Network Management”, On-line, URL

http://www.3com.com/technology/tech_net/white_papers/500627.html.
[5] A. K. Larsen, “The Next Web Wave: Network Management”, Data Communications, 25(01), 1996.
[6] Desktop Management Task Force, DMTF, On-line, URL http://www.dmtf.org.
[7] Sun, Java Management Extensions White Paper, On-line, URL http://java.sun.com/products/JavaManagement
[8] Online, URL http://www.net.cmu.edu/projects/snmp.
[9] Online, URL ftp://wuarchive/wustl/edu/graphics/graphics/packages/NetPBM.
[10] Online, Newsgroup comp.graphics.apps.gnuplot.
[11] J. Schönwälder, H. Langendörfer, "How To Keep Track of Your Network Configuration", LISA VII, Monterey

(California), November 1993.

