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Abstract

Most current management applications provide a rather low-level view of
the managed systems, have limited operations automation, usually forcing
the manager to work at MIB variable level. To solve these problems, an
approach based on a hierarchy of management algorithms for the different
abstraction layers is used in this paper to manage a company’s business
processes. An example is described to illustrate how the top-level
management requirements are refined down to the equipment level,
formalized in contracts enforced by the algorithms and monitored by
management QoS parameters offered by the algorithms.

1. Introduction

The main task of a network manager is offering the end users the best possible service from
the network with the minimum cost. As networks grow in number, dimension, complexity,
dynamism and equipment variety, network management and control is becoming a non-trivial task,
and the amount of effort dedicated to manage a network and its systems is substantial.

The network manager’s task can be simplified by automating simpler tasks, or by providing
him operations powerful enough to implement management goals, with decisions taken at a very
high level.

This paper describes an approach based on management algorithms and contracts to attain
these objectives. It starts with an overview of the different management abstraction levels, and how
the management requirements can be refined from the business process goals down to the
equipment level.

The management framework is based on a hierarchy of algorithms mapped onto the
different abstraction levels. Each algorithm automates the management operations related to a
certain management aspect, as specified on a contract made with its user. Contracts are general-
purpose configuration statements specifying service guarantees to enforce management goals.
Management quality of service (QoS) parameters allow monitoring the guarantees’ fulfillment,
providing a measure of how well the algorithms are doing their job.

The internal operation of the algorithms is then described, with an example to illustrate the
generic algorithm operation models and the improvements obtained by using the algorithms. The
following sections list the benefits of this approach, compare it with other related work, draw some
conclusions and list other issues for further research.



2. Management Abstraction Levels

The concept of business processes is used in modern enterprises to aggregate the tasks
needed to accomplish a certain objective (accounting, sales, product manufacturing, etc.). As shown
in figure 1, these business processes are supported on services, which nowadays are mostly network
and computer based. These services are implemented as distributed applications over a distributed
services layer that provides location independence, transparent remote invocation, and event
notification. Each service is implemented through a few processes running on the company’s
computers. The processes depend on equipment like computers, peripherals, and network
equipment. Each of the layers identified (business process, service, process and equipment)
corresponds to a different management abstraction level. However, this is not a strict division, as
the layers can be further subdivided into sub-layers to ease the implementation.

The business process requirements – usually a prose text – are successively refined to
requirements that make sense at each level (availability, performance, security, configuration and
accounting specifications for each service, process, and equipment). In addition to the refinement,
some requirements specific to the implementation of each level have to be added by the network
manager to configure that level. For instance, the number of servers needed and the network
capacity have to be specified, even if not present in the topmost requirements. All requirements are
formalized as management contracts to the management algorithms that enforce them.
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“The Sales department should be operational at least 99% of the time.”
“The Sales department should be able to process 1000 orders/day.”
“When all data is available, each sale should be processed in less than 10 seconds.”
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“The stocks should be processed in less than 3.5 seconds.”
“The database should be replicated in three different locations

to tolerate faults and distribute load. Each replica should
receive no more than 50% of the requests.”

“The network load in the database server segment should be
less than 20%”

“Links can be disconnected to save communication costs.”
“Router R operation should be checked every 10 seconds.”

“The database transactions should last less than 2 seconds.”
“The redundant servers should be available at least 90% of

the time, and the remaining ones 99.9% of the time”
“Database modification requests are allowed only from

write-domain.”

Figure 1: Management abstraction levels.

The refinement process is done by analyzing each business process dependencies and
mapping the top-level requirements onto them.

Picking the case of the sales delay requirement, figure 2 shows how a sales process is
decomposed. These different components are used to establish the contracts for the management
algorithms at each abstraction level. The corresponding process level contract is:



“The database transactions should be performed in less than 2 seconds.”
“The applications should respond in less than 2 seconds.”
“The data checking delays should be less than 1 second.”
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Figure 2: Refinement of the sales delay requirement.

[Alexandrov 97] proposes a similar decomposition model for performance evaluation
applied to WWW services.

At the upper abstraction levels, the refinement process clearly needs human intuition to
define the configuration requirements and the specific algorithm behaviour. It is envisaged that
below a certain abstraction point, the refinement could be done automatically, by selecting the
correct behaviour from the available algorithms at that level, establishing contracts and selecting
the usual configuration requirements. In fact, middle and lower level algorithms have a
parameterized generic behaviour acting on real managed objects such as servers, routers, trunks,
system parameters and management instrumentation in general. In this way, algorithms act
autonomously within certain border values as specified in their contracts.

A hierarchy of algorithms is then deployed, to decompose the management problem into
several sub-problems at different abstraction levels and at different network locations. To keep their
contracts, the algorithms use their own effort, and the lower level algorithms as specified in
contracts made with each one. These contracts can be dynamically changed by the upper algorithms
as the system runs, to adjust to changes in network or system conditions, and better fulfill the top-
level contract.

As we go down the hierarchy, the network will be more segmented. The level immediately
above a segmentation can take the segmentation in consideration as another degree of action to
fulfill its contract, for instance by balancing load between the different redundant servers, as shown
in figure 1.

The different abstraction levels help both the specification and the implementation of
management. The number and definition of abstraction levels varies in the literature. The logical
layered architecture of TMN [M.3010] proposes four levels: business, concerned with a total
enterprise (i.e. all services and networks) and carries out an overall business coordination; service,
concerned with services offered by one or more networks; network, concerned with each network;
and element, managing individual network elements. [Moffet 93] proposes three levels: goals,
specifying objectives; policies, defining rules; and plans, corresponding to procedures of actions.
The same notation [Marriot 96] is used for all the abstraction levels. [Koch 96] also proposes three
levels: requirements, described in prose; goal-oriented, using templates of attributes specifying
events, constraints and actions; and an operational level, where a Policy Description Language and
an Event Definition Language are used. [Wies 95] proposes four levels: corporate policies,
specifying corporate goals; task-oriented policies, at task or process level; functional policies at
SMF level; and low-level policies at managed object level.



3. Management Algorithms

Management algorithms are active objects with internal state and a set of operations,
specialized on asserting certain conditions over a subpart of the network, by automatically solving
the related problems. The conditions it takes care of are formalized in a contract to the entity that
launched the algorithm. Contracts can be monitored by management quality of service (QoS)
parameters. Figure 3 shows the internal structure of an algorithm for the particular case of the
service level algorithm.

An algorithm offering a contract makes use of other lower level contracts. At each level,
several algorithms can be running to simplify implementation, but the structure is similar for each
one (contracts, configuration requirements and QoS parameters). Each algorithm monitors lower
level QoS parameters, receives events and invokes actions over the objects under its control.
Internally, the algorithms have a monitoring and reactive part to provide quick answers to
problems, and a proactive part acting based on the events history to help in planning.
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Figure 3: Service level algorithm.

The management application is thus the hierarchy of the management algorithms, built
according to the refinement process. As long as the contract is held, the manager can relax on those
aspects, and work at a higher level of abstraction. Contracts are built up of guarantees offered by
the algorithms. Each guarantee has an associated semantics that can be:

best-effort: the algorithm does its best to keep the guarantee.
statistic: the algorithm allows a certain percentage of violations.
deterministic: the algorithm guarantees the condition at all times.

Contracts do not have a simple success-failure result. While working, the algorithms make
the current status of its activity available to its user by the QoS parameters. This allows for a
monitoring activity from the layer above, in order to act at a higher level, to prevent future failures,
if something is not running according to the plan.

The management QoS parameters are important to police how the algorithm is performing
its task. This is even more important on best-effort guarantees that do not lead to contract failures,
but only provide a good measure of the distance towards the ideal conditions. These management
QoS parameters can be seen as a generalization to network management of the common QoS
[Aurrecoechea 98] parameters. Examples of QoS parameters are service delays, service availability,
costs, server load, network load, and error rates.



Constructing the behaviour of higher level algorithms is very much like programming
distributed applications. Each algorithm is active, has its own autonomous behaviour, and interacts
with the other system components to fulfill its contract. As we go down the hierarchy, actions
become more restrict and can fit different models controlled by parameters. Three simple examples
are the following:

• A decision orthogonal multi-variable space can be built in which each coordinate has a
certain weight contributing to a QoS parameter, as exemplified in figure 4. Variables
can be classified as discrete (on/off, high/low/stop), or continuous (when any real value
is allowed). Variables represent some entities related with the guarantees (system
configuration, number of users, etc.), that can be dynamically modified within a certain
range. A typical situation is specifying a QoS optimum working point and a maximum
deviation. Typical algorithm reactions are operation invocations on lower level
algorithms to improve QoS (e.g. increase something 10%). Usually, variables are
modified one at a time.

Maximum
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Optimum Working Point

Discrete
Variable

QoS

Continuous
Variable

Continuous
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Figure 4: Internal algorithm operation.

• The previous model assumes the variables are independent. If dependencies are known,
simultaneous modification on more than one variable can lead to faster convergence.
This corresponds to oblique plan movements in relation to the axes.

• The previous examples assume the variable contributions are monotonic. If the
dependencies between variables are too complex, and a specific formula can be
identified (polynomial, average, differential, fuzzy, etc.), a parameterized specific model
can be used. The monitoring of the system will provide the information for the
algorithm to react.

4. Sales Example

In this section, the example of the sales delay is further analyzed. A simulation of the
system was built using the Ptolemy simulator [Ptolemy]. Figures 5 and 6 show the graphs of the
average and maximum sales delay versus the sales request rate, with and without the algorithms
operating.



It can be concluded that when the rate of user requests increases too much, an overload
situation on the servers and on the network happens, causing service degradation.

According to the contract, sales processing should always be below 10 seconds. This is an
example of a deterministic guarantee, as it should never be exceeded. However, a less rigid contract
could also be written with a statistic guarantee, allowing for some violations.

To keep the contract, the algorithms optimize system and network parameters, improving
operation, and reducing service delays. In addition, the algorithms prevent entering the service
degradation zone, by stopping new users from entering the system whenever necessary.
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      Figure 5: Average sales delay vs request rate.     Figure 6: Maximum sales delay vs request rate.

The lower level contracts derived from this top-level contract have a statistic semantics,
since infrequent violations are tolerated. When the higher layer algorithms sense (by monitoring the
QoS parameters) that lower level contracts are near the edge, they adapt the conditions in the
network, since they control other parameters, so as to improve the situation and prevent contract
failure on both layers. An example is diverting database requests to other database replicas in
different locations.

The meaning of the QoS parameters depends on the abstraction level. At the top level, they
allow for the assessment of the overall quality of the service being provided to the company’s
clients, providing a measure of service time, service throughput and availability (although the last
ones correspond to different contracts).

At the process abstraction level, QoS parameters provide a measure of server load, server
throughput, response times, availability and number of users.

At the equipment abstraction level, QoS parameters provide a measure of error rates,
network traffic in each segment, collisions, cost of the external connections, equipment load and
availability.
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Figure 7: Contributions to the database delay.      Figure 8: Contributions to the database load.

At the service abstraction level, the algorithm analyzes the different service times, trying
to compensate process variations by restricting or loosening the conditions imposed on the process



level contracts. For instance, if the application delays consistently increase, and the database delay
can be tightened, the algorithm does the corresponding process level contract adjustments, still
respecting the overall 10 seconds requirement. In addition, if the sales delay reaches 8 seconds, this
algorithm sets all lower level algorithms to maximum optimization, which includes reconfiguring
the system to better distribute service requests through the servers. If the sales delay reaches 9
seconds, new users are refused from entering the system. These two conditions prevent the system
from entering the degradation zone. For this reason, the graphs of figures 5 and 6 stop at 20
request/s, since higher request rates only happen when the system load is low.

At the process abstraction level, the algorithms try to optimize each server performance.
Considering the case of the database server, a very simple orthogonal multi-variable model with
only two of the variables contributing to the database delay is shown in figure 7. The network delay
specification is passed down to the equipment level algorithm. The database load is further
decomposed (figure 8) into a component due to the database backups, and a component due to user
requests that are controlled at the service level algorithm.

The algorithm acts by suspending database backups when the delays exceed 1 second, and
by turning them on again when the delays fall below 0.8 seconds.

At the equipment abstraction level, the algorithms optimize parameters related to network
and equipment operation, according to the corresponding models. The model for the average
network delay is shown in figure 9. The distributed system uses caches to optimize remote
operations. Management acts on them too. When the cache sizes are increased, both the network
traffic and average delays are reduced, but the processing delays on that host are slightly increased
due to reduced processing resources (both CPU and RAM).

In addition, the routing algorithm can minimize communication costs, or network delays, at
a management option, both corresponding to best-effort guarantees. To minimize costs, links
between company’s branches are disconnected when the traffic is less than 5% of the link capacity
for 5 minutes, provided that connectivity is maintained. The links are restored when the load in any
of the other links exceeds 80%. To minimize delays, all links are established, and traffic is routed
through the fastest route.
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Figure 9: Contributions to the network delay.         Figure 10: Threshold Operation.

Figure 11 shows the experimental results for a single network segment operation for a 90
seconds period, with a 20 request/s load. The instants where the algorithms acted are marked,
according to the algorithm operation previously described. Additionally, during this period, the
application cache is turned on when the application delay exceeds 1.4 seconds, and turned off when
the delay drops below 1.1 seconds.

It should be noted that although the application delay exceeds the contracted limit of 2
seconds for a while, the top-level contract is still kept.



Most of the algorithm actions are converted to thresholds with hysteresis that when crossed
trigger the execution of some action, as shown in figure 10. These thresholds are derived from the
contracts established, and dynamically adjusted during the algorithm operation.
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Figure 11: Experimental results from algorithm operation.

To avoid unpredictable algorithm actions caused by temporary fluctuations on the sampled
variables, a moving average of the samples is used in most cases, instead of the samples
themselves. This moving average is calculated so that each sample’s weight is reduced to half for
each half-life period, which in this example is 3 seconds. To avoid polling the variables, the
algorithms just set callbacks with the necessary thresholds.

The planning algorithms at the service abstraction level analyze the service performance,
faults, accounting, configuration and security information, helping to optimize the company's
operation. In this example, when the thresholds are successively crossed on all database servers,
corresponding to a history of service degradation, the algorithm warns the manager that a new
database server should be deployed, the best location for it, and reassigns the regions to each server.
This information can be determined based on the requests traffic matrix obtained from an RMON2
[RFC 2021] probe.

The planning algorithms at the process abstraction level start a database optimization before
the established limit is exceeded.

The planning algorithms at the equipment abstraction level analyze the routes taken by the
network traffic, defining virtual private network settings like traffic priorities, and reserving
network resources, according to higher-level directives to optimize some services performance.
These algorithms also suggest network modifications like splitting network segments, or moving
machines between segments, to help enforcing network load and delay specifications.

This simple example shows that by controlling a few key variables, the algorithms can
improve system performance, and additionally avoid entering the degradation zone.



5. Benefits of the Contract Approach

There are four aspects where the contract approach brings advantages: the first is the
transparency towards certain aspects of system operation, having the possibility of just monitoring
the QoS being obtained. Each entity with management responsibilities does its best to fulfill the
contract and, as long as the contract holds, the other entities do not need to know how this is done.
This approach can be combined with management by delegation [Yemini 91]: algorithms can be
placed nearer the resources, reducing the overall management traffic on the network. The
delegation of management algorithms decentralizes the management, adding scalability, flexibility,
and fault tolerance.

The second advantage is the simplicity of the environment. The use of formal languages to
specify the behaviour allows an automatic reuse of components to build an application. At each
level, it is necessary to understand the descriptions of the available lower-level algorithms (in order
to select and validate the choice) and to dynamically deploy, configure and activate the algorithms.
The next step is monitoring and controlling their operation. Current mechanisms for defining
management information (like SNMP MIBs) have much of the critical information specified as
human-readable prose that is not suitable for automatic exploitation by generic management
applications.

The third advantage is the framework provided by such environment. It provides simple
guidelines to incorporate vendor dependent features to specific problems. Currently, most of the
new vendor features are performed as private MIBs, which is a rather low-level and unstructured
solution. By standardizing an algorithm environment, manufacturers are stimulated to provide
management functions as management algorithms driven by the search for a solution to a problem
and not so much by the provision of general-purpose management tools.

Finally, complex systems and networks are becoming distributed environments. Distributed
processing aspects must be taken into consideration, as the managed system evolves autonomously
due to its dynamic nature (e.g. routing algorithms). Algorithms can be designed to work with
dynamic functional requirements providing rules to an otherwise potentially free space of
intervention. In addition, different abstraction levels must be provided, as a manager expects to
work at the highest possible abstraction level.

6. Related Work

Low abstraction level management paradigms are based on quality or health parameters
derived from the managed information provided by the managed objects. [Goldszmidt 93]
describes how to produce health functions. [Valimaa 95] proposes a method to produce quality
factors from SNMP MIB variables using fuzzy logic. [Stadler 96] introduces a language for
deriving management information for abstract models from the information provided by agents.
[Anerousis 99] describes how to generate computed views of management information.

A few high-level paradigms for management have been proposed by the scientific
community. They are usually based on artificial intelligence, distributed artificial intelligence
techniques, rules or policies. The architecture proposed by the Imperial College’s Department of
Computing [Sloman 93] organizes the management requirements in policies and roles. Policies are
rules specifying what can, or what must be done. Roles [Lupu 97] identify rights, duties, functions
and interactions associated with a position in the company, resulting in a definition of a set of
policies for each role. [Wies 94] proposes a policy hierarchy and a formal definition of policies to
raise the abstraction level seen by the operators. [Koch 96] also proposes a policy hierarchy, using
different language constructs for each abstraction level. Although policies represent a high-level



abstraction, at a level a human manager would expect, they usually restrict the network behaviour,
instead of improving its operation. In addition, the refinement process has to be done for each high-
level policy, limiting its reuse and requiring significant expertise. Algorithms, on the other hand,
are active objects that check and improve network operation. Moreover, some algorithms are
generic, so that they can be reused for several similar problems, just by changing the variables they
control. The algorithms share the advantages of policies: indeed, some algorithms could be
programmed with sets of policies.

Service level management [Lewis 98][Collins 96] is a comprehensive high-level method of
specifying the management of business processes, the supporting services, and establishing
contracts between service providers and users. However, if monitoring the service level agreement
is a well understood process, real-time automatic enforcement of this contract is not, especially
when the contract has to cover application-level parameters not directly related to network- and
transport-level QoS parameters. The algorithms offer a generic solution for this problem.

The Open Distributed Processing (ODP) reference model [ISO 10746-2] defines a contract
as an agreement governing part of the collective behaviour of a set of objects. A contract specifies
obligations, permissions and prohibitions for the objects involved. The specification of a contract
may include the roles and interfaces of the objects involved, QoS attributes, duration or periods of
validity, indications of behaviour that invalidates the contract, and liveness and safety conditions.
The working draft on QoS [ISO 10746-6] from ODP, extends the ODP concepts and architecture to
allow the description of QoS in ODP systems, focusing mainly on modelling and specifying QoS.
The concepts of ODP are general concepts that can also be applied to management. Although not
originally based on ODP, our approach can be seen as an extension and adaptation to network
management of these concepts. We define algorithms as objects that enforce contracted guarantees,
which may include obligation, permission and prohibitions. Furthermore, a hierarchy of algorithms
is used to refine the guarantees to multiple abstraction levels.

7. Conclusions and Further Work

The management requirements are expressed in four abstraction levels. The management
application is built using a hierarchy of algorithms focused on solving specific management
problems.

The management algorithms offer management guarantees over the managed systems, by
automating management operations and hiding equipment dependencies. The conditions the
algorithms should enforce are specified by contracts that configure each algorithm, and their
fulfillment is monitored by QoS parameters. The algorithms are deployed into a dynamic
management architecture using delegation.

The proposed system provides a high-level view of the management problems to the
manager, by handling the lower-level ones.

The first experimental results show that the ideas proposed are adequate to network and
systems management, accomplishing the proposed objectives. However, other examples have to be
studied and implemented.

A few issues have been left for further study. Conflicts may arise between different
contracts or different guarantees, resulting in opposing management operations that should be
detected and resolved before enforcing the contracts. This task may have to be done in a top-level
manager if there are several mid-level managers managing the same domain.



A method to determine if a contract can be fulfilled should also be developed. This might
involve baselining the network operation to check if the imposed conditions are realistic. A contract
editor should be developed to assist in writing and checking new contracts.

A high-level, management specific, language to program algorithms should be developed.
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