An Environment for Developing Neural
Network-based Intelligent Agents

Adriano Nascimento Miguel Franklin Mauro Oliveira

nascimen@hugo.int-evry.fr castro@hugo.int-evry.fr mauro@etfce.br

LAR - Multiinstitutional Laboratory of Computer Networks
CEFET/CE - Federal Center of Technological Education (Ceard)
LIA - Laboratory of Artificial Intelligence
UFC - Federal University of Ceara

Abstract

This work describes RENATA (Neural Networks Applied to the ATM Traffic Man-
agement), a tool that enables the development of intelligent agents to perform proactive
management at an ATM network. The agents are based on Artificial Neural Networks,
as their intelligent component. Due to their learning, generalization and adaptability ca-
pabilities, neural networks make possible anticipated detection of abnormal situations on
an ATM network, by analyzing its status information. The developed agent provides in-
formation to the neural network, acts according to its outputs and monitors its behavior.

1 Introduction

Applications in computer network have demanded more bandwidth and more accurate require-
ments, such as minimum delay and low loss rates. The conventional technologies seem incapable
of guarantee Quality of Service when they integrate at the same time services of voice, video and
data. ATM (Asynchronous Transfer Mode) satisfies these requirements, so that it was chosen
by the ITU-T to support the B-ISDN (Broadband Integrated Services Digital Networks).

Due to the complexity and flexibility inherent to ATM, an efficient management system is
essential. Management solutions that were adequate to other technologies are insufficient to
ATM. The diversity of services, the high-speed environment and the need for an integrated
solution demand new requirements on the management system [1].

The management tools should anticipate possible problems before they happen and not
only react. It is necessary to observe abnormal behavior in the network, collect its symptoms
and diagnose a possible bigger problem. A proactive approach is therefore always desirable,
specially in ATM environments. Techniques such as expert systems and neural networks have
been applied for endowing management systems of knowledge making them able to behave
proactively [2].

RENATA (Neural Networks Applied to the ATM Traffic Management) is a new proposal for
the development of intelligent agents to perform proactive management at an ATM network.

The agents are based on Artificial Neural Networks. Due to their learning, generalization and
adaptability capacities, neural networks can predict abnormal situations on an ATM network,
by analyzing its status information. The RENATA agents will be able to act directly or just
notify the network administrator about the problem.

The RENATA architecture treats since the acquirement of the necessary data to the neural
network training, passing by its creation until the development of the agent. The agent uses
the ATM management mechanisms (SNMP MIBs, ILMI and OAM cells) and interacts with
the neural network in order to behave proactively. Besides the specification of the physical and
functional architectures, a prototype was implemented integrating the necessary tools for the
implementation of the agents.

This paper has the following organization. The section 2 presents RENATA, specifying
its functional and physical architectures. The section 3 comments implementations details,
describing the implemented tools and the developed agent. At last, section 4 presents some
conclusions and suggestions for future works.

2 RENATA

Although SNMP became the de facto standard for network management, it has well-known
limitations. The application of the intelligent agents technology can solve some of these prob-
lems, specially those concerning to scalability, complexity and cost [3]. If the intelligent agent
presents proactive behavior, a greater optimization is possible. Among the techniques that
enable this characteristic, the neural networks have been very researched. Also, various works
apply neural networks on the resource management problem of ATM netwoks. For example, in
[4] a neural-based controller is proposed for bandwidth allocation. Thus, the interest for neural
networks applications in ATM proactive management has grown. Facilities for the development
of intelligent agents based on neural networks must be created. In this context, RENATA was
projected.

2.1 Functional Architecture

The figure 1 shows the Functional Architecture of RENATA, which has three modules: Training
Module, Neural Module and Management Module. The architecture defines the functionality
of each module and how they interact aiming the development of agents.

ATM Neural Network
Simulator Simulator » Neural » Management

Module Module

Training Module

TI - Training Interface
CI - Control Interface

Figure 1: RENATA Functional Architecture

In the Training Module, the neural network is projected, trained and validated. To accom-
plish that, this module is divided in three: the ATM Simulator, the DSPM (Data Selection
and Preparation Module) and the Neural Network Simulator. The Neural Module consists on

the neural network produced by the Training Module and information about its architecture
and objective. The Management Module is responsible for the integration and activation of
the neural network through the development of an agent that provides the input data to the
neural network and, according to its output, takes the proper actions.

The neural network training is done off-line so it may have a better performance in a high-
speed environment during the operational phase. Because of that, the Training Module is
separated from the Management Module. Next, all the components of the architecture are
described.

2.1.1 Training Module - ATM Simulator

Usually, neural networks need great quantity of data in order to learn. In telecommunications
real situations, their applicability depends on the availability of test patterns that characterize
normal and abnormal operations. If there is not historic records, it becomes hard to obtain
training data since it is not possible to stop a production network only to test it with problems.
So, the use of an ATM Simulator is justified by this difficulty in obtaining data and by the
flexibility to simulate an ATM network under various situations.

From the definition of the problem that will be diagnosed by the neural network, simulations
must be done to obtain the necessary data for the neural network learning. First, the topology of
the ATM network is described: switches, links and terminals with their physical characteristics.
From the topology, applications are simulated according to their traffic load and type. It’s
possible to simulate link failure or heavy load over a node to observe the behavior of the
network and so obtain data that characterizes these situations.

According to the problem, certain log options in the ATM Simulator must be set so that
it generates the data which will be used in the training of the neural network. These data
should correspond to those which will be collected by an agent in a real environment, during
the operational phase.

2.1.2 Training Module - DSPM

Before being submitted to the neural network, data should be selected, divided and treated.
These functions are done by the DSPM (Data Selection and Preparation Module).

According to [5], approximately 98% of the data should come from normal operation and
2% should characterize the situation that the neural network must detect. After that, data
should be divided between training, test and validation data.

After the selection, data should be treated so they can be submitted to the neural network.
Data must be passed from the ATM simulator log format to the Neural Network Simulator
format. Besides that, some neural network models only accept binary inputs, while others
accept real inputs in the interval 0 to 1 or -1 to 1. In this case, techniques like normalization,
scaling and coding are applied. For example, the number of active connections passing through
a switch is an integer that should be scaled to real in the interval 0 to 1 to be accepted as a
valid input in certain neural network models.

Aspects like the type of the training should be considered during the data preparation. For
example, if the training is supervised, the data must also contain the desired output for each
input.

2.1.3 Training Module - Neural Network Simulator

After the problem definition and the data chosen and prepared, the neural network model
must be determined. After this choice, the Neural Network Simulator is used to model the
neural network and to control its training. General parameters, like the learning rate and the
activation function, and other model-specific parameters are configured. These parameters set
the training speed and generalization degree of the neural network, among other factors. The
neural network performance must be monitored during the training to evaluate if the neural
network is converging or if any parameter was badly chosen. In [5] and [6], considerations
about neural networks training for various models are made. The goal is to optimize the neural
network performance over the test patterns. For that, it’s recommended to test its performance
over the test data while the training is done. The Acceptance Criteria, the parameter that
determines if the neural network is trained, depends on its model.

At last, the outcome of the Training Module is the trained and tested neural network. The
Training Interface (TI) transmits the resulting data from the Neural Network Simulator (the
matrix of connection weights) to form a Neural Module. These weights represent the knowledge
acquired by the neural network after training.

2.1.4 Neural Module

The Neural Module consists on the resulting neural network of the Training Module and in-
formation about its architecture and objective. The trained neural network is an application
module that must receive inputs (properly scaled and coded) to make a prediction about the
ATM network status.

The neural network error should be continuously monitored. If the result is below the
Acceptance Criteria, it’s possible that the ATM network dynamics have changed: maybe be-
cause of changes in the topology or because of the introduction of new services. Although,
small changes in the ATM networks should be absorbed by the generalization and adaptability
abilities of the neural network.

The Control Interface (CI) passes to the Management Module the information related to a
Neural Module. This information identifies the neural network inputs and the meaning of its
outputs. The Management Module uses this information to create the proper agent.

2.1.5 Management Module

The Management Module is responsible for the integration and activation of the neural network
through the development of an agent that provides the input data to the neural network and,
according to its output, takes the proper actions, aiming a proactive behavior.

Before the development of agents, it’s necessary to configure in the Management Module
the management environment of the ATM network: devices that will be managed and their
respective management mechanisms (SNMP MIBs, ILMI and OAM cells).

When developing an agent, the information about the neural network provided by the
Control Interface is processed. For each neural network input, a source is defined. The agent
will consult this source before activating the neural network. For each neural network output,
it’s defined what is the proper action to be taken. In its actions, the agent can use the ATM
management mechanisms previously configured. After that mapping, the agent is generated.
Then, it must be installed and activated.

The Management Module is also responsible for monitoring the agents, besides allowing
direct management of the ATM network. The actions taken by the agent should be recorded
for later analysis. The agent should also alert the Management module when the neural network
is below its Acceptance Criteria.

2.2 Physical Architecture

The figure 2 presents the Physical Architecture of RENATA, their modules and how the infor-
mation is exchanged. It introduces a new element in the Training Module: the Neural Network
Documentator (DocNN). This tool is responsible for the creation of the file that contains in-
formation about the neural network. This file is present in a Neural Module.

Training Module

SNNS Neural
NIST ATM Neural Network
. DSPM Network
Simulator . Documentator
Simulator

— »
_ v Prototipation Monitoring
Module Module
&
<
Neural Module Management Module

Figure 2: RENATA Physical Architecture

Physically, the Management Module is divided in two: the Prototipation Module and the
Monitoring Module. The first one is responsible for the agent generation based on the neural
network information and on the ATM network configuration. The other module monitors the
developed agents and the ATM network.

The most complex part of the development of an agent in RENATA takes place in the
Training Module: the modeling and training of a neural network that predicts certain situation
in order to perform proactive management. From the created Neural Module, the Management
Module offers facilities to develop intelligent agents. The resulting agent consists basically on
ATM management mechanisms and the on knowledge to predict determined situation.

Next, the chosen options to the implementation of each RENATA module are presented.
In the case of the ATM Simulator and the Neural Network Simulator, due to their complexity,
existant products were adopted. These products are integrated aiming the training of a neural
network. For the other modules, the following tools had to be implemented: the DSPM, the
Neural Network Documentator and the Management Module.

2.2.1 Adopted Products

ATM Simulator

The NIST ATM Simulator was developed in the National Institute of Standards and Tech-
nology (NIST) to provide an environment of study and determination of the performance of

ATM networks. In a graphic and interactive environment, the user can create various network
topologies and set the operation parameters of each component. While the simulation is run-
ning, various performance measures can be displayed on screen or saved to files for subsequent
analysis [7].

Neural Network Simulator

The SNNS (Stuttgart Neural Network Simulator) has been developed in the Stuttgart Univer-
sity since 1989. The goal of the project is the creation of a flexible and efficient environment
for research on and applications of neural networks [6]. The simulator can be used for create,
model, train, test, analyse and visualize neural networks.

Neural Module

The Neural Module consists on the neural network produced by the Training Module and on
its documentation generated by the DocNN. From the neural network trained in the SNNS,
a tool from the SNNS package is used. The snns2c generates C code representing the neural
network.

2.2.2 Implemented Tools
DSPM

The DSPM is the module responsible for the selection and preparation of the data that will
be submitted to the neural network. The DSPM translates the file in the NIST format to the
SNNS format, selecting the relevant data to the neural network learning. Besides, the DSPM
also does the necessary treatment on the brute data so that it can be accepted by the neural
network.

Neural Network Documentator

In order to the agent may provide the input data to the neural network and interpret its output,
it’s necessary for the Management Module obtain this information when creating the proper
agent. These data are generated by the Neural Network Documentator (DocNN).

In DocNN, information about the objective of the neural network, about its architecture
(inputs and outputs), how it should be activated and evaluated and some training parameters
among other are provided. The information about the inputs defines what data the neural
network must receive in order to predict and how these data should be treated before being
submitted to the neural network. For each output, it should be provided the interpretation of
such prediction and a suggestion of the action to be taken. The DocNN was implemented in
Java, mainly because its portability features.

Management Module

The Management Module functionalities are divided between its sub-modules. The Prototipa-
tion Module is responsible by the code generation of the agent according to the information
generated by the DocNN and to configuration and to the ATM management information; .e.
the configuration of the sources for the neural network inputs and the instruction of how the

agent should act according to the neural network prediction. The Monitoring Module offers
access to the ATM management, besides being responsible for the management of the agents
generated by the Prototipation Module.

Both were implemented in Java. The Java SNMP API developed by the Advent Network
Management, Inc. was used. This API allows the development of Java applets and applica-
tions that use SNMP to communicate with the managed nodes. It was used the API version
1.3.1 for SNMPv2C, since the RENATA developed agent can consult SNMP MIBs for retrieve
information necessary to the neural network prediction, besides also allow itself monitoring by
Monitoring Module.

The Prototipation Module generates Java code for the agent. The neural network is accessed
by native method calls. The agent code must be compiled and then installed in the pre-
established device that must have the Java virtual machine.

2.3 Using RENATA
Access to ATM Management Mechanisms

After an initial configuration phase (using the RenataSetup tool), where all management mecha-
nisms in the network in question are incorporated by RENATA, the agents and the user through
the Monitoring Module can consult SNMP MIBs with a MIB Browser or start OAM cells flows.
This way RENATA allies the ATM management mechanisms with the neural networks intelli-
gence in order to endow the developed agents with a proactive attitude.

Besides offering direct access to the ATM management mechanisms (SNMP MIBs, ILMI
and OAM cells), RENATA allows through these mechanisms the selection of the information
that will be monitored by the agent. By its turn, the agent passes these information, after the
proper treatment to the neural network, that will make a prediction.

In the case of prediction of abnormal situations, the action that should be taken by the
agent must also be configured between those available in the ATM management mechanisms.
For example, the agent can act directly over the device (via SNMP, ILMI or OAM) or only
notify the user.

User Interface

RENATA has two types of user: the developer, that uses RENATA for creating neural net-
work applications for ATM management; and the network administrator, that configures these
applications for running on his network, through agents prototipation.

The developer carries about all process, mainly about the modeling and training of a neural
network for detection of abnormal situations in an ATM network or for resource management
applications. The administrator deals with the configuration, installation and monitoring of
the agents. Each user has its own interface, different in their tools and purposes. The figure 3
shows the prototype with its interfaces.

The I_DES (Developer Interface) allows access to the Training Module facilities: the ATM
simulator, the DSPM, the Neural Network Simulator and the Neural Network Documentator.
From the I_DES, the developer creates neural networks that later will be activated by agents
configured by the administrator. The I_ADM (Administrator Interface) integrates the ATM
management mechanisms and tools for agent prototipation, i.e. the Management Module and
the Prototipation Module. The common element between the two interfaces is a Neural Module.

The figure 3 also shows the prototype general operation, divided in three big phases. In
phase 1, the developer creates a Neural Module, using the Training Module tools. In phase 2,
the administrator configures an agent that will encapsulate the created neural network. The
phase 3 exemplifies the developed agent operation, communicating with an ATM switch through

SNMP.

The table 1 details in steps the phases for the development of an agent in RENATA| relating

I_ADM

I
OO o

-«

RENATA

2

® |
)
><‘ 3 | swe @

Switch ATM Agente

Figure 3: RENATA Prototype

the tools and interfaces used.

I_DES

Step 1: Problem Definition

Step 2: ATM Network Simulation
Tool: NIST Simulator

Step 3: Preparation and Selection of the Data Generated by the ATM Simulator
Tool: MSPD

Step 4: Neural Network Project, Training and Validation
Tool: SNNS Simulator

Step 5: Neural Network Documentation
Tool: Neural Network Documentator

I_ ADM

Step 6: Configuration of ATM Management Mechanisms
Tool: RENATA_SETUP

Step 7: Agent Prototipation
Tool: Prototipation Module

Step 8: Agent Activation and Installation

Step 9: Agent Monitoring

Tool: Monitoring Module
Table 1: Steps and Tools of a RENATA Agent Development

3 Implementation

3.1 Prototype Description

One of the objectives of this work is the creation of a generic development environment of
neural network-based agents. All the tools were implemented in Java, with the JDK (Java
Development Kit) 1.1.7 version provided by Sun Mycrosystems. This guarantees that RENATA
will runs over any platform that supports the Java virtual machine. For the visual interface,
it was used the Borland JBuilder version 1.2. The interface code generated by JBuilder was
modified so that it wouldn’t be dependent on any Borland class.

Since it is practically impossible the creation of a generic DSPM, this module wasn’t imple-
mented because it’s intrinsically specific to each neural network application. So, the developer
must program the DSPM suitable for its application. The following tools were implemented
the DocNN, the RenataSetup, the Monitoring Module and the Prototipation Module.

DocNN

DocNN is the tool used by the developer for describing the characteristics and purpose of the
neural network created in the Training Module.

Important parameters like the Prediction Interval (time that the agent must wait for acti-
vating the neural network, in milliseconds), the Activation Mode of the agent (always active,
when is requested or depending on some network parameter) and the Acceptance Criteria (how
the neural network error must be evaluated) are configured in the DocNN. Some training pa-
rameters are stored in case of a possible retraining. Such parameter values could be changed
or used again.

In the architectural configuration, the developer provides initially the number of inputs and
outputs. For each input (figure 4), the developer must provide its description, the data original
type and the input type allowed by the neural network (float or binary). The data original type
can be float or integer (simple, an array element or a computed attribute), string or data. The
combination between the original type and the input type determines how is going to be done
the data preparation during the operational phase. For each output, the developer describes
its meaning and may give a suggestion of action, in case of its activation.

RenataSetup

RenataSetup is the tool where the administrator informs what are the machines that will be
managed by RENATA and which are the management mechanisms presents in each one.

For each device that RENATA may manage, the administrator must provide its name and
type (switch, workstation or router), besides its IP and ATM addresses. Next, the ATM
management mechanisms (SNMP MIBs, ILMI and OAM cells) available on that machine. For
each MIB, the administrator must inform the read and write communities, besides the port
number of the SNMP agent for that MIB. In the ILMI case, the administrator must configure
the community of each IME (local and remote), besides its SNMP agent port. Concerning to
OAM cells (F4 and F5 flows), the administrator must inform if these are allowed in the device;
if so, what is the driver for this mechanism.

E—Efmliwm Inpuls E3

Ingdex 1

Des¢riplion ATM link speed (Mbis) =]
Kl rl

Original Type |In1eg51 :I

Input Type {Fioat =]
[|Discrete? [~ codeafri? Hum | o

Configure Freparation j Add Input

(¥ | Cancel | Help |

Figure 4: Neural Network Input Configuration at DocNN

Monitoring Module

The Monitoring Module is the tool that provides direct access to ATM management mechanisms
and information, besides of allowing the monitoring of the agents developed in RENATA.

For each device that was configured in RenataSetup, it is possible access its SNMP MIBs
though a MIB Browser. Adapted versions of this browser are used for access to the ILMI MIB
(local and remote IME) and for allowing the monitoring of RENATA agents that are installed
on that device, through request to a specific MIB developed for this purpose.

Prototipation Module

The Prototipation Module is the tool that generates the agents from the information about
the management mechanisms of the ATM network configured on RenataSetup and from the
information about the neural network generated by DocNN. After loading the file generated
by DocNN, for each neural network input, the administrator configures where the agent should
collect this information (in a SNMP MIB or in ILMI MIB, via SNMP SET in its own MIB, by
OAM cells or it’s a fixed and predetermined value).

According to the meaning of each output, the administrator configures what should be
the action of agent: none, a SNMP SET, send a trap to a manager or send a e-mail for the
administrator, communicating the problem.

3.2 Agent Description

In this section, the general operation of the agent is explained. In the agent initialization, two
threads are activated: the PredictionThread (responsible for the integration with the neural
network) and the ReceiverThread (responsible for responding external information requests).
Depending on the Activation Mode and the Prediction Interval, the PredictionThread activates
other threads that are responsible for collecting information for the neural network inputs.
Parallely, these threads actualize the input vector that will be submitted to the neural network.
In the case of the source for the input to be a SNMP GET, a good optimization was achieved
because the socket opening and PDU fulfilling are done only in the thread initialization. During
predictions, the time was practically reduced to almost the round-trip time between the two
devices.

The neural network makes its prediction, updating the output vector. After the activated
output is decided, the corresponding action is taken after the activation of other thread, the
ActionThread. Next, the action is registered and after, it’s evaluated. This way, RENATA uses
a lot the Java thread mechanism, which allows a good optimization in the agent operation, that
is necessary in a high-speed environment.

In order to allow the agent monitoring, including by other management systems, one MIB
was developed according to SMIv2 (Structure of Management Information) with information
related to the RENATA agent and to the neural network. The figure 5 shows the structure
of RENATA MIB, that corresponds to the information that was provided before and to those
related to the operation of the agent.

.iso.org.dod.internet.private.enterprises.renataMIB ‘
|
‘ RenataMIBObjects ‘

nnGenerallnfoGroup HnnlnputGroup HnnOutputGroup ‘ iagActionGroup HiagOperationGroup ‘ iagMibObjectGroup ‘

nnDescr

nnModel
nnPredictioninterval
nnAcceptanceCrit
nnActivationMode
nnActivationValue

nninputNumber

nninputTable

nninputEntry

nnActivationSource
nnActivationMibObj

nninputindex
nninputDescr
nninputSource
nninputMibObj
nninputLast

nnOutputNumber
nnOutputDecRule

iagManagerIP
iagManagerPort

nnOutputTable

iagActionTable

nnOutputEntry

.

iagActionEntry

nnOutputindex
nnOutputRangelndex
nnOutputRangeFrom
nnOutputRangeTo
nnOutputMeaning
nnOutputAction

iagActionindex
iagActionType
iagTrapCode
iagAdmAddress
iagActionMibObj

iagOperationLog
iagOperationNumber
iagOperationErrors
iagOperationCrit
iagPerformOperation

iagMibObjNumber

iagMibObjTable

iagMibObjEntry
I

iagOperationTable

‘ iagOperationEntry

iagOperationindex
iagOperationTime
iagOperActiveOutput
iagOperActiveOutRan
iagOperationAction
iagOperationResult

iagMibObjlndex
iagMibObjDevIP
iagMibObjDevPort
iagMibObjMibName
iagMibObjOID
iagMibObjOperation
iagMibObjSNMPVer

Figure 5: RENATA MIB

4 Conclusion

RENATA is a flexible experimentation environment of the use of neural networks in ATM
management, allowing the development of intelligent agents. In other approaches, the user
would have to worry about all details of implementation of the agents. RENATA provides

facilities to the integration of a neural network in an ATM network, also allowing software test
of neural solutions.

Several MIBs have been analyzed and it was observed that there is few Managed Objects
that model aspects of traffic management and network congestion in ATM [8]. This limitation
has reflexs in this first version of RENATA. However, the extensions of RMON MIB for ATM
and the use of low-level routines may soothe these shortcomings.

Aspects of inter-agent communication are possible extensions of this work. A first idea is to
use an inter-agent communication language, like KQML (Knowledge and Query Manipulation
Language) or though CORBA (Commom Object Request Broker Architecture), that could be
used to provide access transparency and interoperability. However, for some application the
overhead due to CORBA must be evaluated, since it could compromise the efficiency of the
solution, that intends to be proactive. Among other possible extensions, the most natural is the
development of new agents from this environment. RENATA makes possible the development
of a new class of ATM management applications that use neural networks.

References

[1] M. Oliveira, M. Franklin, A. Nascimento, and M. Vasconcelos, Introduc¢io & Geréncia de
Redes ATM. Editora CEFET-CE, segunda ed., 1998.

2] M. A. da Rocha and C. B. Westphall, “Proactive Management of Computer Networks
using Artificial Intelligence Agents and Techniques,” in Fifth International IFIP/IEEE
International Symposium on Integrated Network Management, May 1997.

[3] M. Cheikhrouhou, P. Conti, and J. Labetoulle, “Intelligent Agents in Network Management,
a State-of-the-Art,” Networking and Information Systems Journal, vol. 1, no. 1, pp. 9-38,
1998.

[4] S. A. Youssef, I. W. Habib, and T. N. Saadawi, “A Neurocomputing Controller for Band-
width Allocation in ATM Networks,” IEFE Journal on Selected Areas in Communications,
vol. 15, pp. 191-199, February 1997.

[5] J. P. Bigus, Data Mining with Neural Networks. McGraw-Hill, 1996.

(6] U. of Stuttgart, SNNS - Stuttgart Neural Network Simulator - User Manual, Version 4.1,
1995.

[7] N. Golmie, A. Koenig, and D. Su, The NIST ATM Network Simulator - Operation and
Programming, Version 1.0, August 1995.

[8] L. M. R. Tarouco and M. de Fatima Webber do Prado Lima, “Anélise do Gerenciamento dos
Mecanismos de Policiamento de Trafego em Redes ATM Através de Objetos Gerenciados,”
in XVI Simposio Brasileiro de Redes de Computadores, pp. 319-338, May 1998.

