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Abstract

In this paper, we investigate connection admission management for connections which
generate self-similar traffic. We present a simple mathematical framework which does not require
restrictive assumptions about the network behaviour. We show how this framework can be used to
derive connection admission policies.

I) Introduction

Several studies [1]-[4] have claimed that different types of network traffic, e.g. local area net-
work traffic (LAN), can be accurately modeled by a self-similar process. A self-similar process is
able to capture the long-range dependence (LRD) phenomenon exhibited by this traffic. Moreover,
series of simulation and analytical studies [2]-[3] have demonstrated that this phenomenon might
have a pervasive effect on queueing performance. In fact, there is clear evidence that it can poten-
tially cause massive cell losses in Asynchronous Transfer Mode (ATM)  networks. Actually, the
buffer overflow probability for an ATM queueing system with fractional Brownian arrivals follows
a Weibull distribution. Furthermore, this queueing system suffers from the buffer inefficacy phe-
nomenon [3], [7]. By just increasing the buffer size we are not able to significantly decrease the
buffer overflow probability. Although several works have analyzed the self-similar nature of traffic,
control mechanisms for self-similar traffic have not yet been fully investigated.

One of the key ideas behind Asynchronous Transfer Mode is the statistical multiplexing of
heterogeneous packetized streams. The concept of Effective Bandwidth is intimately connected with
admission management and associated service requirement [4]. The equivalent bandwidth of a
connection (source) is a characterization of the demanded bandwidth of the connection such that its
QoS requirements are provided in a network based on statistical multiplexing. Designers have
gravitated towards the concept of equivalent bandwidth because it promises to bridge to familiar
circuit-switched network design. Although connection admission management is crucial to transport
providers, very little is know about the admission of heterogeneous connections with long-range
dependencies. Few results based on the Theory of Large Deviation are available [4]-[8].
Nonetheless, these results require assumptions which may not correspond to the behaviour of real



networks. In this paper, we derive expressions for the management of heterogeneous self-similar
sources using very simple assumptions about the network. Moreover, we show how these
expressions can be used to define connection admission procedures.

Actually, results shown in this paper are built on the top of a framework previously defined by
ourselves [9]-[13]. In [9] we proposed a new traffic model called a fractional Brownian motion
(fBm) envelope process which characterizes LRD sources. We also derived a new framework for
computing probabilistic delay bounds for a deterministic queuing system, as a model of an ATM
network, driven by this source. We showed that the delay bounds agree with known results obtained
by large deviation theory. This new traffic characterization made possible a more intuitive
understanding of the dynamics of the queuing system. We also derive three time-scales that
completely characterize the queuing system behaviour [10]. Moreover, we analyzed different buffer
management policies for providing diverse loss requirements to self-similar sources in overflow
situations [11]-[13].

This paper is organized as follow. In section II we show an envelope process for a fractal
Brownian motion process. In section III we introduce the time scale of interest for a queuing system
fed by a self-similar process. In section IV we study the management of heterogeneous self-similar
sources. Finally, conclusions are drawn in section V.

II) A Fractal Brownian Motion Envelope Process
It is well known that for a Brownian motion (Bm) process A(t) with mean and variance σ2, the

envelope process can be defined by [14]:

The parameter k determines the probability that A(t) will exceed  at time t. Since A(t) is a
Brownian motion process we can write:

where Φ(y) is the residual distribution function of the standard Gaussian distribution. Using the

approximation  we find k such that

. Hence, k is given by .

We claim that , where . This approach can be extended to deal

with LRD traffic. Let  be a fractional Brownian motion process with mean . Hurst’s law

states that the variance of the increment of this process is given by

where is the Hurst parameter. Thus, we can also

define a fBm envelope process by:

 (1)

The Brownian motion envelope process is just the special case of H = 1/2. Similarly, k

determines the probability that will exceed . In addition, since the process exhibits

LRD, if  exceeds  at time t, it is possible that it will stay above it for a long period of

time.
We should note that the source does not necessarily need to be self-similar in order to match this
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characterization, as long as it matches the behaviour of the envelope process over the time-scale of
interest. We investigate the accuracy of the fBm envelope process representation by inspecting how
well it can model the worst-case behaviour of real network traffic. Assume that the input traffic is
characterized by trace with N sample points, defined by A(t), where A(t) represents the cumulative
number of cell arrivals up to time t, . We propose a very simple method for
computing the fBm envelope process parameters for this trace, by computing the trace’s optimal
envelope process. The advantage of this approach relies on the fact that we do not need to accurately
estimate the trace’s Hurst parameter. The optimal envelope process (the worst-case sample path) for
this trace is defined by . We assume that the process is stationary

so that Y(τ), τ = t - s defines the maximum number of cell arrivals in an interval of size τ. Therefore,

we can choose the fBm envelope process’s parameters (.) so that it matches the behaviour of
Y(.).

We compare the envelope process representation to Bellcore’s LAN trace. We compute the

sample average arrival rate and the sample variance for this trace and substitute for  and σ2 in

Equation 1. We compute the optimal envelope process, i.e Y(.), and choose H so that (.) matches

the behaviour of Y(.). Results indicate that the proposed process is an accurate traffic model [10].
We extensively validated the effectiveness of the fractal Brownian motion envelope process by

utilizing synthetic traces generated by Mandelbort’s procedure [15]. For every trace used, we
verified if the mean, the variance and the Hurst parameter were in agreement with the specified
values. We investigate the accuracy of the envelope process by varying the traffic parameter in the

following range: , , , , where the mean
and the variance are normalized to the channel capacity. Results indicate that the fBm envelope
process is a close upperbound for a fBm process. Moreover, the fBm envelope process is highly
accurate in all  mentioned ranges.

The fBm envelope presents several advantages:
• It is parsimonious, i.e. only three parameters are required in order to completely characterize a

source;
• It can represent SRD and LRD, i.e, the source does not necessarily need to be LRD. We need

only to choose the parameters for the fBm envelope process so that it matches the source’s optimal
envelope process over the appropriate time-scale;

• The input parameters , σ, and H can be provided by the source or estimated in real-time from
the incoming traffic sample by estimating its optimal envelope process;

• It provides very accurate delay bounds with minimal computational complexity.

III) Time Scale of Interest
In this section, we show the time until a queue reaches its maximum occupancy, in a

probabilistic sense. The queue size at this time gives us a simple delay bound [9]. A rigorous
mathematical derivation of the delay bound can be found in [10]. Here, we introduce an heuristic
derivation in order to preserve the intuition behind the framework presented in this paper. Consider
a continuous-time queuing system, with deterministic service given by c. The cumulative arrival

process is given by  ( ). Let , continuous and differentiable, be the

probabilistic envelope process of  such that
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During a busy period which starts at time 0, the number of cells in the system at time t is given
by . Thus, .

By defining  as

 (2)

We can see that

The maximum delay in a FIFO queuing system is given by the maximum number of cells in the
queue during the busy period. We define

Therefore,  and

We can say that the queue length at time t q(t) will only exceed the maximum queue length qmax

with probability e. In other words, only when the arrival process exceeds the envelope process, will
the maximum number of cells in the system exceed its estimated value. Intuitively, by bounding the
behaviour of the arrival process we are able to transform the problem of obtaining a probabilistic
bound of the stochastic system defined by  into an easier problem of finding

the maximum of a deterministic system described by .

For the case of the fBm process, we substitute the envelope process defined previously into
Equation 2 which gives

 (3)

In order to compute qmax we need to find  such that

or equivalently,

 (4)

Hence,  is given by

The time-scale of interest is defined by the time until a queue size reaches its peak, i.e., . We
call it the Maximum Time-Scale (MaxTS), and it defines the point in time where the unfinished
work in the queuing system achieves its maximum in a probabilistic sense. It means that the average
arrival rate just dropped below the link capacity so that the queue size starts decreasing. The average
arrival rate converges to the source's mean arrival rate by the law of large numbers. Consequently,
we  need to worry only about the time scale for which the source's rate still exceeds the link capacity,
in a probabilistic sense. In other words, after a period of time, the probability that the average arrival
rate exceeds the link capacity is negligible, so that the arrival model does not need to reproduce the
source's behaviour for those time-scales. This is the most important time-scale in terms of traffic
modelling. As a rule of thumb to choose the parameters of an input source in order to match the fBm
envelope process, we need to find MaxTS analytically, and to choose the parameters of the fBm
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process, so that it matches the source's optimal envelope process at MaxTS.

Substituting  back into Equation 2, we conclude that:

 (5)

Since the fBm process does not exceed  with probability 1 - ε, the maximum number of

cells will be bounded by qmax with the same probability. We find  so that qmax is equal to K. In

other words, a buffer of size K will overflow with probability e if the link capacity is . Therefore,

 is given by
This result was also obtained by Norros [6] and Duffield [7]. In summary, our framework allow

us to compute delay bounds with little computational effort yet achieve the same accuracy of the
results predicted by large deviation theory. We have also reduced the sensitivity of the estimation
process by using a bound rather than attempting to directly estimate the parameters from the full
trace.

IV) Statistical Multiplexing of Self-Similar Sources
In this section, we use MaxTS to derive expressions for predicting the equivalent bandwidth and

buffer requirements of an aggregate of self-similar sources. Essentially, we propose a way to
compute the demanded bandwidth to support requirements of buffer overflow as well as a maximum
probabilistic delay for an aggregate of sources with diverse traffic parameters. The problem we
study in this section can be stated as:

Given a set of sources with mean , standard deviation σi and Hurst parameter Hi, what is

the link capacity needed so that the maximum queue size will be bounded by qmax with probability
ε?

Assume that we have N independent sources defined by the following parameters: mean

, standard deviation σi and Hurst parameter Hi for . Let the aggregate traffic be denoted

by . The envelope process of each source is given by , and the envelope

process of the aggregate traffic is provided by . We can compute qmax of a queue with

heterogeneous sources by finding  for the envelope process of the aggregate stream.
The mean of the aggregate traffic is given by the sum of the mean of individual sources.

Similarly, since the sources are independent, the variance of the aggregate traffic is also given by
the sum of the variance of individual sources. Hence, the envelope process of the aggregate traffic
is defined by:
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By substituting  in equation 4, we have:

 (6)

We can solve equation 6 numerically in order to find  and then substitute  into Equation 5
to compute qmax.

Moreover, by combining Equations 4 and 5, we have:

 (7)

By using Equations 6 and 7 we can answer the fundamental question posed in the beginning of
this section.

For the special case of multiplexing N identical sources, the envelope process is given

by insofar as the Hurst parameter is preserved when aggregating N

identical sources. In this case Equation 6 is, reduced to:

Using the previous approach, we can find  and qmax:

where and  corresponds to a queueing system fed by just one source.

To evaluate the effectiveness of the equivalent bandwidth expressions (Equations 6/7), we
define multiplexing gain as the ratio between N times the equivalent bandwidth of a single source
and the equivalent bandwidth of N identical sources. We realize that a significant multiplexing gain
can be achieved when multiplexing homogeneous sources. In Figure 1 we plot the gain for a link
capacity of 150 Mbits and sources with mean arrival rate 1.1Mbps for different Hurst parameter.

Figure 1.a displays the multiplexing gain for sources with σ2 = 0.01 whereas Figure 1.b considers

sources with σ2 = 0.3. We observe that the gain for streams with moderate to high variance (σ2 =

0.3) is significantly higher than for streams with low variance (σ2 = 0.01). While for streams with
H = 0.9 and low variance the gain is 1.25, it is almost 2.5 for streams with moderate to high variance.
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The multiplexing gain also increases with the Hurst parameter, specially for streams with moderate
to high variance. This can be understood by the fact that Equations 6/7 take into consideration the
existence of long periods with no arrivals in streams with high Hurst parameters. As a consequence
we have a lower bandwidth demand when multiplexing several sources than a no-multiplexing
approach.

In Figure 2 we display the accuracy of the overflow probability computed by Equations 6/7 as a
function of the buffer size. We consider an aggregate of sources with diverse traffic parameters
(Table 1). As it can be seen, Equations 6/7 predict overflow probability which is in fair agreement
with simulation outcomes. The larger the buffer the more accurate are our results. For small buffer
sizes the difference between the overflow probability computed via our analytical model and via
simulation is less than an order of magnitude.

We can use Equations 6/7 to derive admissible regions for scenarios with heterogeneous sources.
In Figure 3 we illustrate the admission region for two classes of sources, different buffer sizes and

for overflow probability of 10-6. The definition of such region can be used to achieve a desired
revenue/utilization ratio. Note that as the variance increases we considerably decrease the number
of accepted sources. Moreover, the impact of the variance on the number of admitted sources is
stronger for smaller buffer sizes.

The aim of every transport provider is to maximize revenue. Each connection brings a certain
network demand, as well as a certain revenue. In addition, the revenue depends on the adopted
pricing policies. A common pricing policy is based on the duration of the connection as well as the
amount of the carried traffic [16]. In other words, the price of a connection can be defined as price
= a T + b V where a and b are constant, T is the duration of a connection and V is the carried traffic
volume. In Figure 4, we show an example with two types of connections described in Table 2.
Connections arrive according to a Poisson process and their durations are normally distributed. We
consider a = 1 profit units and b = 1.5 a. In Figure 4.a we show the revenue when both type of
connections have the same duration (µ = 700 ATM time slots) and different mean interarrival time
[16]. Note that as the network utilization increases we admit a lower number of more demanding
connections, and consequently decreases the revenue given by this class. In Figure 4.b both classes
have the same arrival rate and the less stringent class (Class A) has the highest connection duration.
Note that since class A holds the channel for longer period of time. We admit a lower number of
class B connections than in the previous example.

V) Conclusions
Since the publication of findings about the self-similar nature of network traffic [1], there has

been a great interest in traffic management mechanisms for this type of traffic. If on one hand,
connection admission is crucial to transport providers. On the other hand, very little is known about
connection admission for self-similar sources. The only available results use assumptions which
may not correspond to real network behaviour. In this paper, we introduced a framework for
defining connection admission procedures. By using this framework, admission as well as pricing
policies can be defined to achieve a desired network revenue.
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Table 1: Traffic Parameters for Figure 2

Sources σ H

A 0.13 0.10 0.63

B 0.11 0.07 0.72

C 0.13 0.07 0.78

D 0.12 0.07 0.86

E 0.11 0.04 0.90

a



Figure 1a: Streams with Low Variance

Figure 1.b: Stream with Moderate to High Variance
Figure 1: Multiplexing Gain for Streams with Different Hurst Paramete
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Figure 2: Overflow probability x Buffer Size for Heterogeneous Sources

 Figure 3.a: Streams with Low Variance
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Figure 3.b: Stream with High Variance
Figure 3: Admission Regions for two Different Classes of Sources

Table 2: Traffic parameter for Figure 4

σ H

Class A 2.84 x 10-4 2.25x 10-4 0.63

Class B 2.2 x 10-3 1.63x10-4 0.8
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Figure 4.a: Class A and Class B interarrival time are respectively 200 and 100 slots
and the mean connection duration is 700 ATM slots

Figure 4.b: Both classes have mean intearrival time of 100 slots. Class A and Class B
connection duration time are 900 and 700 slots, respectively.

Figure 4: revenue per class as a function of the network utilization

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

8e+09

9e+09

1e+10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ev

en
ue

Mean Utilization

Class A
Class B

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

8e+09

9e+09

1e+10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ev

en
ue

Mean Utilization

Class A
Class B


