Fault-Tolerant Routing of Network Management
Messages in the Internet

Jaime Cohen Elias Procépio Duarte Jr.
Universidade Estadual de Ponta Grossa Universidade Federal do Parand
Departamento de Informdtica Departamento de Informdtica
R. C. Cavalcanti, 4748 CEP 84031-900 P.O. Box 19081 CEP 8131-990
Ponta Grossa PR Brazil Curitiba PR Brazil
jaime@convoy.com.br elias@inf.ufpr.br
Abstract

There is a pressing need for dependable network management systems, as network
applications and operations have become critical for organizations and individuals. How-
ever, considering current approaches, a network fault may cause a partial collapse of the
management system. For instance, consider two management entities communicating over
the Internet using SNMP (Simple Network Management Protocol) messages. If there is
a fault along the IP route that is being used to deliver a message, the communication
between the management entities may fail even if they are fault-free. The situation does
not change until the routing protocols at the network layer recover from the network fault.
Alternatively, the application can choose by itself another route, bypassing the network
layer fault. An SNMP routing proxy is an agent that is capable of acting as a bridge be-
tween the two management entities. In this paper we present a new fault-tolerant routing
strategy based on the use of alternative routes that pass through the routing proxies. To
locate the proxy to be used, we propose a fast heuristic that takes into account connectiv-
ity concepts of Graph Theory. We present a procedure to measure the fault coverage of
the new approach in terms of the fraction of network management communication packets
that reach their destination in the presence of network route faults. Finally we describe
the implementation of the routing proxy that allows any agent to become a routing proxy
at the cost of adding a MIB to the agent.

Keywords: Network Management, SNMP, Graph Theory, Internet Routing, Fault
Tolerance.
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1 Introduction

Computer network applications have become critical for organizations and individuals. At
the same time, networks are becoming increasingly larger and more complex. It is thus
necessary to have systems and tools that allow effective network monitoring and control,
i.e., integrated network management systems [Ros94]. The Simple Network Management
Protocol version 3 (SNMPv3) is the Internet standard management architecture. An
SNMPv3 system is composed of management entities which communicate using the man-
agement protocol. The architecture defines a Management Information Base (MIB) as a
collection of related management objects which are kept in order to allow management
applications to monitor and control the managed nodes [HPW98].

SNMPv3 entities have traditionally been called managers and agents. Managed nodes
contain an agent, which is a management entity that have access to management instru-
mentation. Each system has at least one Network Management Station, which runs at
least one manager entity. Managers are collections of user-level applications, which may
aim at performance evaluation or fault diagnosis, among others. There is currently a
very large number of SNMP-based systems available, both commercial and on the public-
domain.

One of the most important components of network management systems is the fault
management subsystem. The purpose of fault management is to allow the quick discovery,
isolation and solution of network faults [LFC95]. It is absolutely essential that a network
fault management system be fault-tolerant, being able to work correctly even in the
presence of faults in the network over which it is run [JMNM94]. However this is not the
case today for most systems [Jr.97, JN98, JMNN97|.

Consider a pair of network management entities, a manager and an agent communicat-
ing over the Internet using SNMP messages. As SNMP is an application layer protocol,
if there is a fault along the IP route that is being used between the entities, their com-
munication may fail even if the two entities are fault-free. Actually these entities will not
be able to communicate until the routing protocols at the network layer recover from the
failure. It is known that routing in the Internet does present a number of problems and
instabilities [LAJ98, LMJ99, Pax98, Pax96].

A solution to this problem is to allow the application itself to re-route messages,
bypassing the network layer fault. An application route is defined as a route computed
at the application layer, and is a concatenation of network routes, which are computed
at the network layer [JMNM94]. An SNMP routing prozy is an entity that is capable of
acting as a bridge between the two management entities. The route from a manager to
the proxy then to the agent is an application route; the route from the manager to the
proxy is a network route, the route from the proxy to the agent is also a network route.

An algorithm to locate proxies on a given backbone was introduced in [JMNN98|. The
algorithm begins considering the network routes from a fixed manager to each agent. In
the first step, the algorithm marks all nodes that can reach both manager and agent if
one link is removed from the graph, i.e., if one link is not operational, it finds which nodes
can reach both agent and manager through a route that does not employ the removed
link. The algorithm keeps for each node a counter of the number of alternative routes
that the node provides. Nodes are ranked as proxy candidates according to the value of
these counters.

In this paper we present a new fault-tolerant routing strategy to locate routing proxies.
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The advantage of the new strategy is that it does not use the ever-changing network routes
as input, being based on the network topology. The main criterion of the strategy is to
find nodes contained in high connected parts of the graph in order to maximize the chances
that the newly create application routes do not use the fauty link. We present a procedure
to measure the fault coverage of the new approach in terms of the fraction of network
management communication packets that reach their destination in spite of network route
failures.

The rest of the paper is organized as follows. Section 2 presents an overview of the
Internet’s SNMP framework, including a description of the routing proxy. In that section
we also describe de proposed criteria to find good proxies and some definitions. Section 3
presents the algorithm for locating the proxies. Section 4 presents a procedure to measure
the fault coverage of the new approach. Section 5 present experimental results. Section 6
concludes the paper. The Appendix includes an ASN.1 description of the routing proxy’s
main objects.

2 SNMP Routing Proxies

The Simple Network Management Protocol version 3 (SNMPv3) is the Internet standard
management architecture. An SNMPv3 system is composed of management entities which
communicate using the management protocol. SNMP entities have traditionally been
called managers and agents [Ros94]. Managed nodes contain an agent, i.e. a management
entity which have access to management instrumentation. A manager queries the agents
for management information describing the state of links, devices, protocol entities and
nodes. Agents may also send event information to the manager by using alarms called
traps. The manager takes decisions related to fault diagnosis, performance management,
and network configuration, among others, based on the collected information.

There is a pressing need for network management systems capable of handling errors.
Although network management systems are in principle responsible for fault management,
current systems often fail as a consequence of the faults they should instead be helping
to solve. If a communication link along the path from the manager to an agent or to a
managed network is down at some point, there will be a collapse of network management,
as the NMS won’t be able to determine the state of part of the managed network.

To make the network management system resilient to network failures there has to be
alternative means of accessing agents. The network is in general a mesh-type structure,
there are multiple potential paths between two communication nodes. However, since
network management systems are application layer entities, these have little or no con-
trol over the paths that will be chosen by the network layer for routing the management
queries. So, alternative paths for management communication have to use application
layer entities which relay the management query and the replies along adequate commu-
nication routes.

Using the concept of a routing prozy [JMNN98], the NMS has a simple application
routing engine to implement a fault tolerant routing system. An SNMP proxy is an entity
used by an SNMP manager entity to access another device, i.e., the proxy receives the
query, transmits it to the agent, gets the reply and sends it back to the manager.
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2.1 Application Routes

Consider the simple network topology in figure 1, where the manager (NMS) is connected
to an agent (Ag) and also to two gateways, G1 and G2. Considering communications
involving the NMS and the Ag, suppose that routing is such that the direct link is used
to communicate the queries and replies, as shown in part A of the figure. If the link
between the NMS and agent fails, network management queries will be delayed until the
network layer recovers from the failure. The delay may be significant as a new route for
the agent must be discovered. A proxy could relay the queries from NMS to Ag and the
corresponding replies from Ag to NMS, as shown in part B of the figure. The condition
to obtain this solution is that the routes used by the proxy be available when a failure
occurs in the network route between manager and agent. In the example, G2 can be used
as proxy in such a situation.

A A
j |
i I
G2 | 2 |
o w| Proxy | _____ |
A: NORMAL OPERATION B: FAULT RECOVERY

Figure 1: Management communication routes.

An application route is a concatenation of one or more network routes, which are joined
by an application. Thus, the network route from the NMS to the proxy and the network
route from the proxy to the agent result in an application route from the NMS to the
agent when concatenated. Network routes are not transitive, so if there is a network
route from node A to node B, and another network route from node B to node C, the
concatenation of these two network routes may be different from the network route from
node A to node C. Thus, the application route can be used as an alternative when there
is a fault along the corresponding network route.

For a simple network topology like that of figure 1 the position of the proxy is quite
obvious, but for a more complex network it is not a simple decision.

If any network route from the manager to an agent is not available, the agent will
become unreachable to the manager. A set of proxies should be determined such that
whenever an agent becomes unreachable an application route will be established to reach
that node. In the next section a proxy location algorithm is presented to improve the
availability of the network management system.

2.2 The Criteria and Ideas Behind the Algorithm

The development of an algorithm to position routing proxies in a network requires the es-
tablishment of well defined criteria to specify an ordering of the nodes that are candidates
to became routing proxies for each pair of communicating nodes. Bellow we propose a set
of criteria and their justification.

The algorithm receives as input the network topology and the nodes in which the
manager and the agent are running. The network topology is given as an undirected
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graph with possible multiple edges. Multiple links between two nodes actually occurs in
practice. Possibly, the network can be weighted. The weights can represent the bandwidth
of the connections or some reliability function of the links.

The main criterion used for sorting the routing proxies is based on connectivity con-
cepts of Graph Theory. Those nodes of the network that belong to subgraphs with high
edge-connectivity have precedence to be a routing proxy. In this way, the chances that
the application route and the IP route are different is increased and also the proxy is
likely to be reused when there are other faulty connections.

To avoid the use of proxies located too far from the communicating nodes, a bound
on the length of the newly created application route is imposed.

To summarize the criteria used to find a good proxy, we enumerate them: (1) The
proxy must belong to a component with large edge-connectivity. (2) The distance of the
proxy must be bounded so that the the length of the application route does not exceed a
certain size.

Beside the above ideas, two rules are used to break ties: (1’) The size of the component
containing the candidate routing proxy should be maximized. Proxies located in large
components also maximize the chances that the network route and the application route
are disjoint. (2’) The distance of the application route resulting from the use of the
routing proxy should be minimized.

For an example of a good proxy that follows our criteria, see figure 2. Assuming that
the network route between the nodes representing the server and client has been broken,
a good choice for the routing proxy is node A.

Figure 2: The direct link from the client to the server is faulty. Following our criteria, the first

routing proxy to be tried would be node A.

2.3 Definitions
In this section we define some concepts about connectivity and distance on graphs that

will be used in the description of the algorithms in the next section.

Applictation Route Length. The length of the application route formed by a routing
proxy is defined below:

Definition 2.1 For nodes prozy, manager and agent, define new-length(prozy, manager, agent)
as the sum of the length of the network path from the manager to the prozy and the length
of the network path from the prozy to the agent.
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Neighborhood. The concept of a neighborhood will define those nodes that when used
as a routing proxy will form an application route that is not too long. The definition
follows:

Definition 2.2 For an integer d and nodes manager and agent of the graph, define
d-neighborhood(manager, agent) as the set of nodes v such that the application route

using v as prozy has length d or less.

Vertex Numbering and Components with Maximum Edge-Connectivity. The
connectivity parameters used to sort the candidate proxies are given below:

Definition 2.3 Let #C(v) (with respect to a graph G) be the edge-connectivity of a non-
trivial subgraph of G containing v and such that the cardinality of any cut separating nodes
of this subgraph is mazimized. Also, define MCC(v) as the largest subgraph containing
v and such that any pair of vertices of this subgraph cannot be separated by a cut of size
less than #C(v). See figure 3 for an exemple.

Figure 3: This figure shows the connectivity numbers of the nodes and the components
MCC(v).

In the definitions of #C() and MCC(), note that by non-trivial we mean a subgraph
containing two or more vertices. If trivial cuts were allowed in the definition, the degree
of the vertex would be its connectivity number. But the degree of a node is not a good
measure for our problem. One of the reasons is that there may be many similar paths
passing through the node and this situation happens exactly when the node belongs to a
subgraph with low connectivity. For example, consider an induced subgraph that has a
star topology. All IP routes between pairs of those nodes may pass through the center of
the star and a good routing proxy may need to avoid passing through this center. Note
also that the degree of a vertex v is an upper bound for #C'(v).

3 The Algorithm for the Routing Proxy Selection

The main algorithm for proxy location first finds a good routing proxies inside some
neighborhood of the nodes that are trying to communicate. The connectivity criteria is
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used and ties are broken by the size of the maximum connected component containing
the node and by the distance of the new route.

The most difficult step to be accomplished by the algorithm is to find the connectivity
numbers of the nodes. This problem is discussed in a separate subsection. Below we
describe the main algorithm:

Algorithm Find_Proxies (Network N, Node manager, Node agent)
Output: a list of candidate proxies ordered from the best to the worst
begin
Let L be an empty list;
Find the Edge-Connectivity Numbering of each node, #C(v), and
the sizes of their correspondent maximum connected components MCC(v);
Find new-length(v_proxy, manager, agent) for each node v_proxy;
Let P be the IP path used for the manager-agent communication;
Let d = 2;
while |L| <= n-2 do
Sort the nodes in V-L and in the (d*|P|)-neighborhood(manager,agent)
in non-increasing order, using as key
<#C(v), IMCC(v) |, - new-length(v,manager,agent)>;
Append the sorted nodes to the rear of L;
d :=d+ 1; // the neighborhood is augmented to reach new nodes
end_while;
return L;

end.

Time Complexity The time complexity of the above algorithm is given by the
time to find the connectivity numbers and the distances in the network. The distances
can be computed by two applications of a single source minimum distance algorithm, one
having the manager as source and the other having the agent as source. Using Dijkstra’s
algorithm the time taken is ©(n.log(n)), assuming that the network is sparse.

The running time complexity of the entire algorithm depends on how the functions
#C() and MCC() are computed. Both functions can be computed in time O(n?) using
the graph theoretical concept of Cut Trees, see [CJ01] for a complete description of the
algorithm. To avoid the high time complexity of the exact algorithm, we propose in this
paper an heuristic to compute the functions #C(v) and MCC(v). The running time
of the heuristic drops to O(n + m), assuming that the networks are sparse. The whole
complexity of the algorithm is improved to ©(n.log(n)+m). We also show experimentally
that the heuristic gives a good approximation for #C'(v).

3.1 A Linear Time Heuristic to Compute #C(v) and MCC(v)

The heuristic we propose is based on an idea suggested by an algorithm described in
[KR96] for another problem related to connectivity in graphs. The heuristic we describe
here seeks, at each step, to remove a small number of edges that form a set of two edge-
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connected subgraphs possibly connected by simple paths. The vertices of the 2-edge-
connected subgraphs have their estimatives of their #C(v) increased by 2 and the others
by 1. To that end, the heuristic removes, from each connected component and at each
step, a depth first search tree plus a set of edges to form 2-edge-connected subgraphs.
The extra edges are called cover edges. The cover edges are found using the following
heuristic: to cover an edge, find the edge not in the tree that goes as high as possible. In
this way, the edge tends to cover a large number of tree edges.

A pseudo-code of the algorithm follows:

Algorithm Heuristic_Compute_#C(Graph G)
Output: An approximation of the function #C(v), for all vertices v.
begin
for all v in G
#C[v]l = 0;
if degree(v) = 0
then remove v from G;
end_for;
while the set of edges is not empty do
for each connected component c of G do
T = a DFS tree of c;
for each edge of T do
find the cover edge of e; // e may not exist if e is a bridge
for each node v of c do
if v belongs to a cycle of (T + the cover edges)
then #C[v] = #C[v] + 2;
else #C[v] = #C[v] + 1;
end_for;
delete T and the cover edges from G;
remove isolated nodes;
end_for; // end of the each component for
end_while; // end of the outer while
return #C();

end.

The algorithm runs in worst case of O(m/n(m+n)). In practice the graphs are sparse,
so the expected running time is linear because m/n is O(1).

To compute the function MCC(v), given the exact connectivity number of the nodes,
we need to transverse the graph starting at vertex v and visiting just the neighbors
with #C/() greater than or equal to #C(v). Since we computed the function #C'(v)
approximately, the same algorithm will give an approximation for the function MCC().

4 Fault Coverage Measurement

The previous section introduced a new approach to locate SNMP routing proxies on a
given network. These proxies are used to implement a fault-tolerant routing strategy for



Network Management as a Strategy for Evolution and Development 95

network management messages. Consider a pair of management entities communicating
over an Internet backbone. Consider, for instance, that a manager application has sent a
message to an agent. Whenever this message is not delivered because of a fault on the IP
route, e.g. a faulty link, a new application route is tried, which is the concatenation of
the IP route from the manager to the routing proxy, and the IP route from the routing
proxy to the agent.

In this section we evaluate the impact of using the Routing Proxies on the depend-
ability of the network management system. We give a measure of the fault coverage
considering single link faults. The system is fully operational when all management mes-
sages are properly delivered. The system has failed if a message cannot be delivered.
A failed system can be repaired if there is a Routing Proxy that is able to bridge the
communication between manager and agent.

To obtain our fault coverage measurement for a given network, we fix the manager, and
consider that all other nodes in the backbone are agents. Every node can be considered to
be the manager, in this way all possible manager-agent communications over the network
are taken into consideration.

We define the Link Vulnerability, v;, for a given link /;, as the number of agents that
become unreachable to the manager if /; is faulty divided by the total number of agents. In
the presence of a proxy placement algorithm, the Link Vulnerability defines reachability
taking into account possible paths going through the chosen proxy.

Network Vulnerability, V', for a given network is the weighed summation of link vul-

L
DY

IZ]
The fault coverage ¢, of a system, gives the probability that the system will recover

nerabilities, for all L links in that network, i.e.: V =

given the occurrence of a fault in the network. In this context it refers to the probability
that the network management system will stay operational if one link becomes faulty. The
measure can be obtained from the previously introduced vulnerability. For the network
management case, whenever an alternative route exists as an option for the communica-
tions that use a given link, the coverage of the system is improved, as the system remains
operational. This is how the measure is useful for analyzing the placement of proxies
over the network. We can easily generalize the fault coverage concept to consider a set of
managers by summing the fault coverage for each manager and dividing the result by the

number of managers.

5 Experimental Results

All graphs used in the experiments were generated using the Waxman Method described
in [ZCDY7], a paper dedicated to the study of methods to model Internet backbones. We
used graphs with different number of nodes and average degree around 4.

First we compared the exact value of the function #C'(v) with the value computed by
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the heuristic. We show experimentally that on the average the difference for each node is
less than one. The table 1 shows the results. One column shows the sum of the differences

over all nodes and the other is the average difference for the nodes.

n | sum of differences | average error per node
50 39.2 0.78
100 64.2 0.64
200 155.0 0.77
500 428.0 0.86

Table 1: Comparison between the exact values of #C() and the values found by the

heuristic.

The table 2 shows that the routing proxies have a good chance to recover the commu-
nication in case of random errors in the network. The values are the percentages of pairs
of nodes that can recover their communication after some link in their IP route has failed.
The results presented are the average computed considering the failure of every link, one
at a time, and all pairs of nodes, what is equivalent to the coverage measure defined in
the previous section. The column entitle “one proxy” represents the percentage of times
that the first routing proxy was able to restore the communication between the pair of
communicating nodes and the next column shows the results when a second routing proxy
is tried when the first one fails.

n | one proxy | two proxies
10 73% 93%
20 5% 93%
30 62% 87%
50 59% 81%

Table 2: Percentage of node pairs that recover their communication using the method

proposed in the paper.

6 Conclusions

As network management runs at the application level, it fails whenever management enti-
ties employ a network layer route that is faulty. In this paper we propose a fault-tolerant
routing strategy for network management messages over the Internet. This approach is
based on using alternative application routes that pass through a special SNMP entity
called routing proxy, which acts as a bridge between the pair of communicating entities.
Any SNMP agent may have the functionality of the routing proxy with the cost of adding
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a new MIB. This approach allows network management systems, which include a fault
management system to be fault-tolerant.

We propose an algorithm to locate routing proxies that receives as input the network
topology, the manager and the agent whose network route has become faulty. The main
criterion to select proxies is to find the maximal connected subgraphs of the network.
In this way, the probability that the proxy can be used when there are faulty links is
maximized. The algorithm returns a set of proxies that we call candidate prozies. The
algorithm runs in worst case of O(m/n(m + n) + n.log(n)), where n is the number of
vertices and m the number of edges in the graph. In practice as the graphs corresponding
to backbones are sparse, the expected running time of the algorithm is O(n.log(n) + m).
We gave a procedure to evaluate the fault coverage of the new approach which gives the
percentage of management messages that are correctly delivered in spite of network level
route faults.

Future work include adapting the algorithm for weighted graphs modeling the band-
width of the links, and comparing different approaches to find routing proxies.
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