
Measuring Complexity of Network and Service Management Components

Ognjen Prnjat, Lionel Sacks
University College London, Torrington Place, London WC1E 7JE, England, UK

email: {oprnjat | lsacks}@ee.ucl.ac.uk

Abstract

Software metrics are currently used in the industry mainly for cost and effort estimation, while some
research suggested their use as fault indicators. There are very few empirical studies in software
measurement, especially in the realm of object-oriented metrics. There is no record of management
system assessment using software metrics. In this paper we discuss the use of the established object-
oriented metrics as complexity/coupling and thus risk indicators early in the management system
development lifecycle. Moreover, we subject a service management component designed in UML to
the metric assessment, and present a detailed analysis of these measurements. The service
management component was re-engineered in the context European Commission-sponsored ACTS
research project (FlowThru). The measurement results indicate that the highest level of complexity,
and thus also risk, is exhibited at the interconnection points between stand-alone components. Finally,
the results imply a strong ordinal relationship between the metrics.

Keywords: Service management components, object-oriented metrics, UML.

1 INTRODUCTION

Telecoms network and service management systems are in their essence complex distributed
software systems with many interdependencies. Designing, implementing and deploying such
systems holds finite risk in terms of the impact of their stability on the overall stability of the
underlying managed networks [Prnj99a][Prnj00]. Ability to highlight and remove potential
risk areas in the management system’s operation early in the development lifecycle would
thus be greatly beneficial. In this paper, we discuss an approach to assessing complexity and
coupling of the system classes using the well-established object-oriented metrics, with the aim
of pin-pointing potential risk areas early in the design. We select a set of seven established
object-oriented metrics, and describe how these can be deployed early in the development
lifecycle. Moreover, we illustrate our approach with the case study of the ACTS project
FlowThru subscription management component. We present our complexity/coupling
measurements in detail. Considering the shortfall of the empirical metric studies, and no
indication of previous management system assessment using metrics, we perceive the case
study as a general contribution to the field. First, we introduce the current state of the art in
software metrics. Then, we present our candidate early-lifecycle metric suite. Next, we
present the FlowThru management system, with the focus on the subscription management
component. Finally, we present the results of the assessment of the FlowThru subscription
management component with our metric suite, and discuss the outcome and implications.

2 METRICS: BACKGROUND

Software measurement is a branch of software science dealing with measurement of internal
and external attributes of software. Internal attributes are measured only in terms of the entity
under observation, and they are measured directly, i.e., independently [Fent94]. External
attributes are measured in terms of how the entity relates to its environment, and they are
measured indirectly - i.e., measures of other attributes must exist so as to obtain the measure
of an external attribute.

Software measurement is rarely applied in the industry: only 1-2 % of software organisations
use metrics in the development process [Your96]. Applications in the industry focus on cost,
productivity and effort estimation [Well94]. A set of metrics distinct from these process-
oriented estimation metrics focuses on measuring the internal structure of software. These aim
to capture the complexity of software modules and their dependencies. A number of pre-
object-oriented complexity measures exist [Shep93]. With evolution of object-oriented (OO)
design, a number of new complexity metrics emerged. The old metrics are not applicable to

125



the OO paradigm, where the data and algorithms are bound together in a class, and a software
program is a number of collaborating objects. OO structural complexity metrics are presumed
to be collectable early in the development [Chid98] [Kami99], from analysis and design
documents developed through a notation such as OMT [Rumb91] or Unified Modelling
Language [UML]: moreover, some tools performing metrics collection have recently been
developed [MetricsOne]. A number of OO metrics exist [Hend96]; in the following we list the
most important ones.

Inheritance complexity is measured using Depth of Inheritance Tree (DIT) [Chid94] and
Number of Children (NOC) [Chid94] metrics. Complexity of the inter-class relationships can
be measured using the number of relationships [Li93] metric. Stand-alone class complexity is
assessed using the Weighted Methods per Class metric (WMC) [Chid94], and the interface
complexity metric [Hend96]. Relationship between classes can also be measured using the
Coupling Between Objects (CBO) [Chid94], Message-Passing Coupling (MPC)
[Li93][Lore94] and Response For a Class (RFC) [Chid94] metrics. Whitmire complexity
metric [Whit97] quantifies the overall relationship complexity, including associations,
aggregations, inheritance and message passing. The Lack of Cohesion of Methods (LCOM)
[Chid94] measures the amount of cohesion in a class. The DIT, NOC, CBO, RFC, WMC and
LCOM are collectively known as CK (Chidamber-Kemerer) metrics.

The CK metrics were suggested for prediction of external process attributes: productivity, re-
work and design effort [Chid98]; testing effort and reuse [Chid94]; and maintenance effort
[Li93]. In these studies, it was indicated that the metrics are effective for the assessment of
these economic variables. As such, these metrics are considered as a managerial tool aiding
project managers in effort allocation and planning. In [Chid94] these metrics were suggested
to identify the design flaws and areas of re-design: however, no details were given. Another
family of studies [Bria98][Kami99][Basi96] dealt with another aspect of metrics application:
their relationship with fault-proneness. In [Basi96] CK metrics were shown to be better in
predicting fault-proneness then other existing metrics. The metrics counts were related
through a model to the binary value of fault-proneness: the class was detected during testing
as either with a fault, or not. Measurements were performed on final code; the faults were
recorded during testing.

There are only a few reported studies dealing with empirical OO measurements [Chid98]
[Chid94][Li93][Bria98][Basi96][Kirs99]. In all these, CK metrics were collected directly
from the code. Apart from one of the three studies in [Chid98], the only other reported study
where it was attempted to collect the metrics from the analysis and design documents is
[Cart96]. Here, however, most of the metrics proved to be difficult to collect from the design
documents without having access to the implementation, with the exception of DIT and NOC.
In [Kami99], use of metrics was suggested early in the development lifecycle; however, the
source code of a mail system (141 classes) was used for metrics collection.

3 CANDIDATE METRIC SUITE

Measuring complexity and coupling early in the telecoms system development lifecycle can
be seen as of high importance.

Since early years of software engineering [Cons79], to the modern days of OO software
[Bern93] an axiom was established: good internal structure implies good external attributes of
software. Good software should have low coupling between classes. Coupling is a measure of
the degree of dependence between classes: "two classes are coupled if there is evidence that
methods defined in one class use methods or instance variables defined in another" [Chid94].
Second, the stand-alone classes of good software should have high cohesion and low internal
complexity. Cohesion is the extent to which the class is geared towards performing a coherent
task [Cons79]. Internal class complexity could be concerned with either class internal
structure (complexity of its control flow) or the complexity of the class as seen from the
outside: complexity of its interface.

By locating and removing/redesigning points in the design which are highly complex, the
telecoms software designer would avoid likely causes of software failure; and would

126 LANOMS 2001



minimise the likely fault propagation by reducing the coupling of the modules/classes. In this
context, metrics can be seen as risk indicators early in the development lifecycle [Prnj99b].

Our early-lifecycle metrics suite [Prnj99b] consists of seven distinct OO metrics: Depth of
Inheritance Tree (DIT), Number of Children (NOC), Coupling Between Objects (CBO),
Message-Passing Coupling (MPC), Response For a Class (RFC), interface complexity metric,
and Whitmire complexity metric. All are class-level metrics. DIT [Chid94] is depth of
inheritance tree: deeper trees constitute greater design complexity, and the deeper a class is in
the inheritance hierarchy, more methods it inherits and more complex it is. NOC [Chid94] is
defined as the number of immediate sub-classes subordinated to a class in the class hierarchy:
classes with high NOC are more complex - they effect more classes. CBO [Chid94] is a count
of a number of other classes that a class is coupled to. If a method in class A uses methods or
instance variables in class B, then A is coupled to B. CBO is independent of the number of
references that A makes to B. High coupling makes a class highly dependent on other classes
and thus more vulnerable to error propagation and less reliable. MPC [Li93] is, in contrast to
CBO, dependent on the number of references that class A makes to class B. MPC is defined
as the number of send statements in a class. Large MPC implies large dependency on other
classes: classes with high MPC have higher coupling and pose more risk to system operation.
RFC [Chid94] is a set of all methods that can be invoked in a response to a message received
by an object of a class, i.e., the number of methods potentially available to the class. Large
RFC indicates large complexity: tracing of dependencies becomes difficult, and coupling
paths more intricate. The interface complexity [Hend96] assesses the stand-alone complexity
of the class. Interface can be specified as a set of services: queries and commands. Interface
complexity is the sum of weighted commands and queries: weight factor is number of
arguments required for the query/command. The larger the interface size, the more difficult it
is to select and correctly use the service provided by the class. Whitmire complexity [Whit97]
assesses total class coupling within the design. It is a four-dimensional metric: dimensions are
sets of inheritance, association, aggregation and message passing arrows related to the
particular class. The magnitudes in each dimension are given by the cardinality of the relevant
set of arrows.

This set of OO metrics can be calculated from analysis and design documents. DIT and NOC
metrics can be calculated early in the lifecycle, considering the UML class diagrams depicting
the inheritance hierarchy. The CBO, MPC, RFC and Whitmire complexity can be calculated
once the interrelationships between classes are identified: UML class diagrams depicting
associations and aggregations must be available, as well as the collaboration diagrams
illustrating the message exchange between the collaborating objects. Interface complexity
metric can be calculated once the stand-alone class interface has been specified, including the
full set of parameters. These metrics were chosen as a representative set for the assessment of
the analysis/design complexity of a system. We believe these metrics effectively capture the
complexity of the design, tackling both the stand-alone class complexity, as well as different
forms of inter-class coupling, ranging from inheritance coupling, through general relationship
coupling such as association and aggregation, to message-passing oriented coupling which
reflects the amount of interaction on the detailed level. Also, this metric set is representative
because it includes the key metrics suggested in research. We omitted the stand-alone class
cohesion measures (LCOM [Chid94]): those depend on the low-level class internal detail,
available only through code-level information [Biem98]. These measures are thus not useful
when considering the analysis and design information, which we are proposing to measure.

In the following, we present the FlowThru management system, with the focus on the
subscription management component, which was used as a case study for complexity and
coupling measurements.

4 FLOWTHRU MANAGEMENT SYSTEM

The ACTS project FlowThru focused on the reuse and integration of a number of components
developed by the other ACTS projects - PROSPECT, REFORM, and VITAL. The aim was to
demonstrate integrated multi-domain service and network management using a number of re-

127Network Management as a Strategy for Evolution and Development



used components, demonstrate integration technology at work, and specify development
guidelines for reusable management components [Lew99b].

Development methodology, focused on building the reusable management components, and
building systems from reusable components, was specified [Lew99a]. The reuse was
incorporated in the lifecycle through specification of reusable components not only on the
basis of their design and software, but also by including component’s analysis model. Thus,
flexibility is achieved since the component is more self-contained and as such does not have
to be a part of any distinct framework. The reuse model is that of a façade [Jaco92]. Means of
mapping between the façade and the ODP [ODP] viewpoint models are specified. The
notation used is UML [UML].

Components specified in this manner provide a basis for developing a management system
satisfying the target business process requirements. FlowThru identified three distinct trial
business systems, based on the TeleManagement Forum’s Telecom Operations Map process
areas [NMF-TOM]: fulfilment, assurance, and accounting business systems. The components
constituting these systems, in the FlowThru scenario, form the management system
responsible for provision and maintenance of the ATM connectivity services.

The fulfilment business system aims at provision of the services. It consists of subscription,
configuration, and network planning management components. The subscription component
is responsible for introduction of new services available to the customer, and withdrawal of
these services. It also enables both the service provider administrators and the customers to
manage the end-user access to the service capabilities. Configuration management deals with
network provisioning: it performs the configuration of network elements according to
customer demands. Network planning component performs Virtual Path (VP) and route
planning, considering the anticipated network traffic and customer demands. The assurance
business system deals with the in-service problems that are encountered: it focuses on fault
management, Service Level Agreement (SLA) violations, and the like. A number of
components are encompassed, including service level accounting, TINA trouble ticketing,
ATM accounting, and subscription management components. The accounting business system
focuses on the accounting processes for the connectivity provider and the third party service
provider. The TINA-based components include access session, service session, subscription,
accounting, ATM accounting and connection management components.

The focus of our work is the subscription management component, which was the subject of
software measurement presented here. Design of the component is based on the subscription
model specified in the TINA service architecture [TINA-SA]; and was further refined,
implemented and reused in the ACTS project PROSPECT. This component is located in the
service provider’s domain, and its basic role is to manage the subscription aspects of the
service-level interactions between the customer and the provider. It is accessed by both the
service provider’s and the customer’s administrators. This component manages the view of
the services offered to the user: i.e., the definition and the list of available services. Secondly,
it manages the subscribers’ profile: it deals with the creation and deletion of subscribers, with
their details, and the details of their network sites and user groups. Finally, it manages the
process of customer’s subscription to the services offered: creation and deletion of
subscriptions, management of subscription details, and authorisation of the end-users access
to the services. Thus, the component has the full knowledge of the classes of service provided,
and the SLAs and service records that are part of the service offered. Customers can create a
new subscription contract, they can modify and existing contract, modify a Service Usage
Group (SUG) associated with an existing contract, and cancel an existing contract.

The analysis-level modelling of the component was conducted using the FlowThru
methodology [Lew99a]. Since this component was already implemented, and its design
already specified, the analysis model was developed post-facto, and from scratch. However,
the existing component design was not followed in detail; rather, the generic requirements on
this component were considered when building the analysis model.

128 LANOMS 2001



The scenarios of the component use were modelled through the UML use case diagrams,
depicting the interactions between the actors and the component. These were complemented
with the UML class diagrams depicting the interrelationships between the analysis-level
object classes: boundary objects (handling the communication between the component and
the outside world), control objects (performing the use case specific behaviour) and entity
objects (representing the information within the component) [Jaco92]. The consolidated
analysis diagram is shown in Figure 1. This diagram does not depict the interactions between
the Provider Administrator (PA) and the Customer Administrator (CA) with the component.

The analysis-level control and boundary objects correspond to the ODP computational objects
(COs) and their interfaces, respectively. The main COs used to manage the services offered,
the customer’s subscriptions to these services, the customer profiles, and the service usage
groups, are the Service Manager, Subscription Manager, Customer Account Manager and the
Service Usage Group (SUG) Manager, respectively. The most complex interactions within the
component were modelled using the UML collaboration and sequence diagrams.

Figure 1 - The consolidated analysis class diagram [Flow-http]

The design and implementation of the component already existed prior to component’s use in
the FlowThru scenario. Thus the design-level model of the component was re-documented

129Network Management as a Strategy for Evolution and Development



using UML. The design model is comprised of the “static” and the “computational” models.
The static model is a set of UML class diagrams representing in more detail the entity objects
from the analysis model, and depicting their relationships. These entity objects are referred to
as t-type objects. The computational model shows the core functional units - computational
objects (mapped from the analysis model control objects), represented as packages which
export the interface (i-type) objects (which in turn are mapped from the analysis model
boundary objects). The entity objects are linked to functional units that manage and use them.
Both analysis and design level entity objects effectively correspond to ODP information
objects. While most of the analysis to design mappings were reported [Lew99a] to be one-to-
one, in some cases the one-to-many (when an object is decomposed in the design phase) and
many-to-one (when two or more objects in the analysis were identified, having similar
functionality) mappings also occurred.

5 METRIC ASSESSMENT: ANALYSIS AND DESIGN MODELS

The analysis model was developed post-facto, considering the generic requirements for the
component. The analysis model is based on [Jaco92] framework, and is represented by a set
of 24 UML diagrams [Flow-http]. The assessment of the FlowThru analysis model involved 4
metrics out of the 7 proposed in the suite. There is no inheritance in the FlowThru analysis
model, and thus the inheritance metrics, DIT and NOC, are not applicable. The interface
complexity metric is also not applicable, since although the interface methods were defined,
the parameters were not. The FlowThru analysis model consists of 28 classes. The data
collection was performed manually.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

CBO

MPC

RFC

Whitmire0

5

10

15

20

25

Metric Value

Class Number

CBO

MPC

RFC

Whitmire

Figure 2 - Metrics distributions per class (FlowThru analysis)

Figure 2 graphically depicts the metrics distributions per class. On average, the most complex
class is the Provider Administrator (PA) interface - the boundary/interface class of the
provider management application, which controls the subscription management component.
Next, the four control/computational object classes follow: the Subscription Manager, Service
Manager, Customer Account Manager and the SUG Manager. The boundary/interface object
classes are next on the complexity scale, the Subscription Management Interface exhibiting
particularly high complexity. Finally, the purely information (entity) object classes
representing the key data entities follow.

As an illustration, for Whitmire complexity metric, we present the basic summary statistics
(mean, median, standard deviation, minimum, maximum) (Table 1), the histogram of the
distribution of metric values (Figure 3, left), and the boxplot of metrics values (Figure 3,
right). The boxplot depicts the centre and variation of the data set, and marks the outliers. It is
constructed from the three summary statistics: median (value m for which half the values of
data set are smaller then m and half are bigger), the upper fourth (value u which is the median
of values larger than m), and lower fourth (value l which is the median of values smaller than
m). Values m, u and l split the data into quarters. The box length is d = u - l, and upper tail

130 LANOMS 2001



value is u + 1.5 d. The outliers are marked with a star. Thus, the boxplot shows the skewness
of data, by the position of the median in the box, and by the length of the tail. Here, median is
off-set of the centre and the tail lengths are unequal (left being non-existent); the data set is
strongly skewed to the left. This metric identifies the PA interface as the most complex,
followed by the four main control/computational classes - Subscription Manager standing out.

Mean 2.536

Median 1.5

Standard deviation 3.892

Minimum 0

Maximum 19

Table 1 - Whitmire complexity statistics (FlowThru analysis)

181614121086420

10

5

0

Whitmire complexity

F
re

q
u
e

n
c
y

                

20100

Whitmire complexity

Figure 3 - Whitmire complexity histogram (left) and boxplot (right) (FlowThru analysis)

All four metrics used to assess the analysis-level FlowThru management component indicate
that the two most complex classes are the PA interface - the interface from the provider
management application to the subscription management component, and the Subscription
Manager - the main control/computational class in the component. The highest complexity
thus seems to be is exhibited at the interfaces between stand-alone components.

The design model was simply reverse-documented using UML on the basis of the existing
implementation. It consists of 108 UML diagrams [Flow-http]. The assessment of the design
model involved 4 metrics out of the 7 proposed in the suite. There is no inheritance in the
FlowThru design model, and thus the inheritance metrics, DIT and NOC, are not applicable.
The MPC metric is also not applicable, since collaboration diagrams illustrating the message
exchange between the collaborating objects are not included in the design documents. The
design model consists of 103 classes. The data collection was performed manually.

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

RFC

Interface

CBO

Whitmire

0

5

10

15

20

25

30

35

40

Metric Value

Class Number

RFC

Interface

CBO

Whitmire

Figure 4 - Metrics distributions per class (FlowThru design)

131Network Management as a Strategy for Evolution and Development



Figure 4 graphically depicts the metrics distributions per class. Classes with all the metric
values of 0 are not included in the diagram. On average, the most complex class is the
i_DB_sag, the main Database interface class. However, for the purpose of this discussion we
ignore all the Database (DB) interface classes, and concentrate on the classes directly relevant
for the realisation of the design target functionality.

All four metrics used to assess the FlowThru management component design indicate that the
most complex class is the i_subscrnInfoQuery, the interface class derived from the analysis-
level Subscription Management Interface, as the most complex one. All of the metrics next
point out the other interface classes derived from analysis level Subscription Management
Interface, followed by the interface classes derived from the SUG Management Interface and
the Service Management Interface analysis classes. The purely information (t-type) object
classes representing the key data entities exhibit much lower complexity counts.

Considering this result, we can note that the complexity of the design-level packages, derived
from the analysis-level control/computational classes, is hidden behind the interfaces they
export. This was not the case in the analysis model, where the interface complexities were
trailing after their corresponding control/computational class counterparts. However, the
complexity measurements do propagate evenly through the development phases. In the
design, the interface classes derived from the analysis Subscription Management Interface are
the most complex. This is analogous to the analysis model situation, where the most complex
class, apart from the PA interface which is not described in the design, was the Subscription
Manager. Similarly, the most complex design-level information object class (or t-type class in
the FlowThru design terminology) is the t_AssignGroupSelection, derived from the most
complex information object class in the analysis: the Subscription Usage Group.

The most complex class, i_subscrnInfoQuery, is the outside interface to the main
control/computational class in the component. Thus, the complexity measurements of the
FlowThru design again re-iterate the point raised in the FlowThru analysis study: the highest
complexity is exhibited at the interfaces between the stand-alone components.

6 DISCUSSION

Metrics data exhibits distinctive features, including non-normal distributions and
multicollinearity. Thus, we conducted a statistical analysis of measurements, so as to trace
interesting trends in data. This is followed by a more general discussion of the experiment.

The typical metrics distribution (for all metrics) is strongly left-skewed, with a few outliers
distinctly standing out. Since the distributions are non-normal, the basics statistics such as
mean and the use of parametric statistical methods do not accurately capture the distribution
features and the interrelationships between the distributions. In the case of non-normal
distributions the use of robust statistics (such as median and ranks) and nonparametric
statistical methods is advocated [Schn92][Fent91]. Assumptions for the use of nonparametric
statistical methods are much less restrictive then for the parametric methods (which usually
assume normal distributions, equality of variances across samples, etc.). However, the
nonparametric methods are as rigorous, and allow the analysis of order relations [Schn92].

The strong relationship between the whole set of metrics is a problem referred to as
multicollinearity. Thus, we concentrated on investigating the associations between the
metrics. First, we investigated the linear association between the metric values, by calculating
r, the linear (Pearson) correlation coefficient between each pair of metrics. The linear
correlation coefficient is a descriptive measure of the linear (straight-line) relationship
between two variables. This is the typical approach to testing for metrics interrelationships,
commonly reported in literature [Chid98] [Li93]. The linear correlation coefficients for
FlowThru analysis and design measurements are high for each pair of metrics within one
isolated experiment. The majority of correlation coefficients are higher than 0.8. Similar
result was reported in [Chid98], where the correlation between the metrics was mostly higher
than 0.8. These results should indicate that the regression equations linking each pair of
metrics are highly suitable for making predictions of one metric on the basis of the other (i.e.,

132 LANOMS 2001



one metric should be a good linear predictor of the other). Then, the coefficient of
determination, or r

2 
(where r is the linear correlation coefficient), would give the quantitative

measure (percentage) of the amount of variation of one metric (response variable) explained
by the variations in the other metric (predictor variable).

20100

9

8

7

6

5

4

3

2

1

0

RFC

C
B

O

Figure 5 - Scatter plot of CBO versus RFC (FlowThru analysis)

However, by examining the scatter plots we concluded that the data points are very weakly
scattered about a straight line: one of the scatter plots is shown in Figure 5 (CBO plotted
against RFC). Once this is the case, we cannot make definitive statements concerning the
usefulness of one metric as a linear predictor of the other. The assumption for both the linear
correlation coefficient and for finding the regression equation is that the data points are
clearly scattered about the straight line [Weis99]. Also, regression is sensitive to the presence
of outliers, which appear to be a distinctive feature (legitimate data points) of metrics
distributions (as discussed above) and as such can not be justifiably removed. Moreover, we
can not use regression inferences because the two basic conditions supporting the assumptions
for regression inferences are not met. The first is that the plot of the residuals against the
values of the predictor variable (residual plot) should fall in a horizontal band centred and
symmetric about the x-axis. The second is that the normal probability plot of the residuals
should be linear. Residual is the difference between the observed and predicted value of the
response variable. The plot of the FlowThru analysis CBO residuals against the RFC values is
shown in Figure 6, left. The residuals do not fall in a horizontal band. The normal probability
plot of the residuals is shown in Figure 6, right: the plot is not straightforwardly linear. Thus,
we conclude that the assumptions for regression inferences are violated.

20100

4

3

2

1

0

-1

-2

-3

-4

RFC

R
e

s
id

u
a
l

43210-1-2-3-4

2

1

0

-1

-2

N
o
rm

a
l 
S

c
o
re

Residual

Figure 6 - Residuals versus RFC (response is CBO) (left) and the normal probability plot (right)

Considering the weak linearity of scatter plots, and the violations of the regression inferences
assumptions, we conclude that we cannot claim that any pair of metrics can be used to
determine the regression equation (linking the two metrics) from which meaningful
predictions can be made. We can say that there is enough statistical evidence to doubt the

133Network Management as a Strategy for Evolution and Development



possibility that the magnitude ordering of one metric directly implies the linear magnitude
ordering of the other, and that the intervals between the two values of one metric are
proportional to the intervals between the values of the other metric, for any pair of adjacent
classes that these measurements refer to.

An alternative approach to determine the relationship between the metrics is through the use
of nonparametric statistical methods. The nonparametric methods can be used to avoid
rigorous assumptions such as linearity. The nonparametric method equivalent to linear
correlation is the calculation of the rank (Spearman's) correlation coefficient between paired
values (from same classes) of the two metrics. This procedure effectively lowers the metrics
scale from interval to ordinal, avoiding the magnitude-related relationships between metrics
[Schn92]. In this procedure, we use ranks of metrics rather than the metrics values
themselves. This loosens up assumptions about data relationships (linearity), while still giving
a valid measure - ranking of classes according to the metrics value. The rank correlation
coefficients for FlowThru analysis and design measurements are shown in Table 2. All rank
correlation coefficients are significant at the 95% confidence level.

CBO MPC RFC Whit.

CBO 1

MPC 0.993 1

RFC 0.846 0.859 1

Whit. 0.614 0.626 0.626 1

CBO RFC Whit. Inter.

CBO 1

RFC 0.994 1

Whit. 0.749 0.742 1

Inter. 0.993 0.998 0.741 1

Table 2 - Metrics rank correlation coefficients: FlowThru analysis and design

The metrics rank correlation coefficients are high. This indicates that there is a strong ranking
relationship between the metrics. Thus we can say that there is enough statistical evidence to
say that each metric could be useful in predicting the ranks of the other metrics (more or less,
depending on the value of the rank correlation coefficient). Exceptionally high (>0.95) rank
coefficient is exhibited between CBO and MPC, and between RFC and interface complexity.
This indicates that any combination of: CBO or MPC; RFC or interface complexity; and
Whitmire complexity metrics would form a set of three complementary metrics.

We consider the FlowThru metrics experiments to be an empirical research contribution in
their own right. As discussed before, there are few reported studies dealing with the practical
system evaluation using the OO metrics. In the majority of reported studies, the metrics (CK)
were collected from code, despite the fact that they were originally envisaged [Chid94], and
later advertised [Kami99], as earlier lifecycle measures. The one of the only two reported
studies involving the design documents [Cart96] reported problems with metrics collection -
only DIT and NOC were collected successfully. Moreover, metrics were never applied to
network and service management systems.

Our experiments are the first to assess a management system using metrics. Although the
system assessed originates from a research project, we consider it as representative since a
number of professional organisations participated in the design. The system was chosen due
to the public availability of design documentation, which is not the case in the industrial
organisations.

The experiments demonstrated that the metrics collection from the analysis and design
documents is possible. However, not all of the metrics can be collected early in the
development lifecycle: the analysis-level documentation allows collection of Whitmire
complexity, CBO, MPC, RFC, NOC and DIT; while the interface complexity can be collected
only at the detailed design stage, since it requires full interface elaboration. It is also generally
believed that the ability of metric collection to some extent depends on the development
framework and the notation used. However, we demonstrated that through thorough use of
established diagrammatic techniques such as UML metrics collection becomes easy (note that
some tools such as MetricsOne [MetricsOne] have been recently developed to ease the
collection of metrics from design documents).

134 LANOMS 2001



A number of general observations can be made concerning the results of our case studies.
First, the system did not contain any inheritance. This might be due to either the fact that the
development team was not accustomed to the OO design philosophy, or it could be a
reflection of the size of the system, which can be considered as small-scale. However, low
inheritance measures (DIT and NOC) were also reported in a number of earlier studies
[Chid98] [Cart96] [Basi96].

Second observation is that the CBO counts appear distinctly low, as compared to the MPC,
RFC and Whitmire complexity counts, which also depict the coupling between objects. This
is mainly due to the fact that these other three coupling measures actually include the amount
of collaboration between classes, while the CBO accounts for the number of collaborating
classes. However, the CBO counts are still much lower than in previous studies reported in
the literature, which can be due either to the size of our system, or the fact that the designers,
using the design heuristics, aimed at minimising the number of collaborating classes.

Next, all the metrics have a typical non-normal distribution: strongly left-skewed, with a few
outliers distinctly standing out. Also, metrics are highly correlated in terms or ranking of the
classes. Particularly high rank correlations are exhibited between CBO and MPC; and RFC
and interface complexity.

The final observation is that the majority of classes have distinctly low metric counts. In case
of FlowThru analysis 53% of the classes have the average complexity between 0 and 2, while
in the FlowThru design this number rises to 76%.

All of the metrics used thus identify a subset of classes as distinct from others in terms of
complexity. These classes are most usually the main computational object classes in the
system, performing a manger-control task. Also, the highly complex classes can be the most
important information object classes in the system. The most complex classes singled out in
our case studies were the classes operating at the interfaces between the stand-alone
management components. These most complex classes were singled out by all of the metrics
making up our metrics suite. These measurements indicate that the highest risk for the
systems' integral operation is exhibited at the major interconnection points.

The metric suite in these experiments was used simply as an analysis tool for assessment, i.e.
diagnostics of the most complex classes. These classes are then labelled as the classes with
highest risk. The re-design was not applied during development, because the system was
assessed post-facto.

7 CONCLUSION

In this paper, we have suggested the use of established object-oriented software metrics for
assessment of the management system design early in the development lifecycle. The
complexity and coupling measurements would give an early indication of the potential risk
areas in the system design. This information would be valuable in the context of modern,
highly distributed network and service management systems, whose correct functioning is of
paramount importance for the operations and maintenance of the underlying managed
telecoms network.

We used seven existing software measures to form a metric suite that yields the complexity
and coupling measurements of the system classes. We demonstrated the usefulness and
applicability of this approach through a case study of the FlowThru subscription management
component: both analysis and design models. Apart from being one of the rare empirical case
studies of the object-oriented measurement, this experiment is the first one to assess a
telecoms management system using the object-oriented metrics. The case study empirically
demonstrated that the highest complexity, and thus also risk, for the management systems'
operation is exhibited at the interconnection points between the stand-alone components.
Finally, the experiment assessed the nature of the interrelationship between the individual
metrics within the metrics suite, uncovering a strong ordinal relationship between the metrics.

135Network Management as a Strategy for Evolution and Development



8 REFERENCES

[Basi96] V. R. Basili, L. C. Briand, W. L. Melo, “A Validation of Object-Oriented Design Metrics as Quality Indicators”,
IEEE Transactions on Software Engineering, Vol. 22, pp. 751-761, 1996.

[Bern93] E. V. Bernard, “Essays on Object-Oriented Software Engineering”, Prentice-Hall, 1993.

[Biem98] J. M. Bieman, B. Kang, "Measuring Design-Level Cohesion", IEEE Transactions on Software Engineering, Vol.
24, No. 2, pp. 111-124, February 1996.

[Bria98] L. C. Briand, J. Daly, V. Porter, J. Wust, "A Comprehensive Empirical Validation of Design Measures for Object-
Oriented Systems", Proceedings of the Fifth International Software Metrics Symposium, pp. 246-257, 1998.

[Cart96] M. Cartwright, M. Shepperd, “An Empirical Investigation of Object-Oriented Software in Industry”, Technical
Report TR96/01, Bournemouth University, 1996.

[Chid94] S. R. Chidamber, C. F. Kemerer, “A Metrics Suite for Object-Oriented Design”, IEEE Transactions on Software
Engineering, Vol. 20, No. 6, pp. 476-493, 1994.

[Chid98] S. R. Chidamber, D. P. Darcy, C. F. Kemerer, “Managerial Use of Metrics for Object-Oriented Software: An
Exploratory Analysis”, IEEE Transactions on Software Engineering, Vol. 24, No. 8, August 1998.

[Cons79] L. Constantine, E. Yourdon, “Structured Design”, Prentice-Hall, 1979.

[Fent91] N. E. Fenton, “Software Metrics - A Rigorous Approach”, Chapman and Hall, 1991.

[Fent94] N. E. Fenton, “Software Measurement: A Necessary Scientific Basis”, IEEE Transactions on Software Engineering,
Vol. 20, No. 3, March 1994.

[Hend96] B. Hendson-Sellers, “Object-Oriented Metrics, Measures of Complexity”, Prentice-Hall, 1996.

[Jaco92] I. Jacobson, “Object-Oriented Software Engineering - A Use-Case Driven Approach”, Addison-Wesley, 1992.

[Kami99] T. Kamiya, S. Kusumoto, K. Inoue, "Prediction of Fault-proneness at Early Phase in Object-Oriented
Development", Proceedings of the 2nd IEEE International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC '99), pp. 253-258, 1999.

[Kirs99] C. Kirsopp, M. J. Shepperd, S. Webster, "An Empirical Study Into the Use of Measurement to Support OO Design",
Proceedings of the 6th IEEE International Metrics Symposium, IEEE Computer Society, 1999.

[Lew99a] D. Lewis, C. Malbon, A. DaCruz, "Modelling Management Components for Reuse using UML", Proceedings of
the 6th International Conference on Intelligence in Services and Networks, Springer-Verlag, Berlin, 1999.

[Lew99b] D. Lewis, "A Software Development Methodology for Service Management", Published in Telecom'99 Forum.

[Li93] W. Li, S. Henry, “Object-Oriented Metrics that Predict Maintainability”, Journal of Systems and Software, Vol. 23,
pp. 111-122, 1993.

[Lore94] M. Lorenz, J. Kidd, “Object-Oriented Software Metrics”, Prentice-Hall, 1994.

[MetricsOne] http://www.numbersix.com/Extras/MetricsOne.asp

[NMF-TOM] Network Management Form, "Telecoms Operations Map", NMF GB910, Stable Draft 0.2b, April 1998.

[ODP] ITU Draft Recommendation X.901-X.904, "Basic Reference Model of Open Distributed Processing"; Part 1:
"Overview and Guide to Use", 1995; Part 2: "Foundations", 1995; Part 3: "Architecture", 1995; Part 4: "Architectural
Semantics", 1995.

[Prnj99a] O. Prnjat, L. Sacks, "Integrity Methodology for Interoperable Environments", IEEE Communications, Special Issue
on Network Interoperability, Vol. 37, No. 5, pp. 126-139, May 1999.

[Prnj99b] O. Prnjat, L. Sacks, "Telecoms System Design Complexity and Risk Reduction Based on System Metrics",
Proceedings of the 10th European Workshop on Dependable Computing (EWDC10), May 1999.

[Prnj00] O. Prnjat, L. Sacks, "High Integrity Inter-Domain Management", in A. Galis (Ed.), "Multi-Domain Communication
Management Systems", CRC Press - USA, ISBN: 084930587X, June 2000.

[Rumb91] J. Rumbaugh et. al., “Object-Oriented Modelling and Design”, Prentice-Hall, 1991.

[Schn92] N. F. Schneidewind, "Methodology for Validating Software Metrics", IEEE Transactions on Software Engineering,
Vol. 18, No. 5, pp. 410-422, May 1992.

[Shep93] M. Shepperd, “Software Engineering Metrics, Vol. 1”, McGraw-Hill, 1993.

[UML] Rational Software Corporation, Unified Modelling Language, http://www.rational.com/

[Weis99] N. A. Weiss, "Introductory Statistics", Addison-Wesley, 1999.

[Well94] E. F. Weller, "Using Metrics to Manage Software Projects", IEEE Computer, Vol. 27, No. 9, pp. 27-33, 1994.

[Whit97] S. A. Whitmire, “Object-Oriented Design Measurement”, John Wiley and Sons, 1997.

[Your96] E. Yourdon, "Rise and Resurrection of the American Programmer", Prentice-Hall, 1996.

136 LANOMS 2001


