

SPIDERNet: the Security Policy Derivation for Networks Tool
F. Barrère, A. Benzekri, F. Grasset, R. Laborde♦ , B. Nasser,

Université Paul Sabatier - IRIT/SIERA -
118 Rte de Narbonne F31062 Toulouse Cedex04

Telephone: +33 (0) 5 61 55 60 86 - Telecopy: +33 (0) 5 61 52 14 58
{barrere,benzekri,grasset,laborde,nasser}@irit.fr

Abstract:
The construction of a security policy becomes increasingly difficult because of the complexity of the factors to consider.
As long as networks were composed of closed infrastructures, security relied on models based on the end-systems access
control. Today, if these models still remain typical, they must be completed by the definition and usage of “security
models for networks”. The design of such models must allow to approach the security concerns in a pragmatic way
rather than relying exclusively on the expertise of the network administrator. For this objective, we raise the question :
when do we implement network security mechanisms? After shedding light on the weaknesses of the access control
models, we show the strong tie between the policy defined by the system administrator and that defined by the network
administrator. Then we define modelling tools and rules that start from the users rights to determine constraints on the
filtering rules and encryption mechnisms to be used. A prototype called SPIDERNet implemented in PROLOG language
validates our appoach.

Keywords: Secure Networking, Security Policy, Security Verification.

1. Introduction

The networks and more particularly the Internet continue to bring new working means and tools which are not
risk free on these networks’ previewed usage. Even though the enterprises are conscious of the importance of e-
commerce and e-business technologies around, they are also aware of the security problems caused by opening their
information systems to internetworking. Each technology used, each facility brought to the users proves to be a new
challenge for the networks administrators who must control the data flows in their communication infrastructure and for
the system administrators who must control the accesses to the resources. What should be their security policy? Is it
correct? A security policy is the regulation that governs the behavior of the system within a security context. From a
technical point of view, the behaviour of a device is a function of the configurations set up on it. So, one of the major
problems of policy implementation is to determine these configurations starting from a fixed objective.

Traditionally the Access Control Models (ACMs) were used to define and put in place a security policy [14].

The system is modelled in term of objects and subjects. The policy aims at indicating the access rights of the subjects on
the objects (for example users’ rights on files in UNIX systems). These models were defined within the operating systems
and databases framework; they were employed thereafter in networks. ACMs differ by the manner of treating the
authority which defines the policy (Discretionary Access Control [8], Mandatory Access Control [2,3], hierarchical
organisation [1,12], cooperative organisation [4]) and the way of approaching the policy targets (classification by trellis
[2,3], role approach [11]).

Nevertheless, ACMs offer powerful tools for controlling fixed data, i.e., that doesn’t travel across a network. In

fact, data goes through a chain of devices. Depending on the network topology, these devices may be heterogeneous
(terminal devices, routers, proxies, authentication servers). For example, data confidentiality within a group of persons can
be guaranteed by access control mechanisms set up at the device containing these data, access control of the data flows by
firewalls, ALGs (Application Level Gateway), encryption protocols as PGP, SSL, IPsec, L2TP. The problem is to decide
which devices interfere in the realisation of a stated security objective. It is necessary to check the consistency of the
existing configurations. Contrary to databases or to operating systems access control problem, few works were interested
to check if a security objective is applied within the network context (checking filtering configuration [6], IPsec
configuration [7]).

We propose then a tool providing recommendations on the configurations to be laid down, starting from the

definition of the users’ rights. In the first part we expose our solution. We choose a method to specify the users’ rights on
data. Then we propose a notation to specify the abstraction of the network topology. With these elements, we define rules
and properties to permit determine recommendations of the security mechanisms to be implemented, starting from the
specification of the users’ rights and the network topology. In the second part, we describe our implementation of the
above concepts in PROLOG language. Finally, we show an example of a VPN using our prototype.

♦ Author to contact for more information

29

2. Towards an end-to-end security policy1
If the security modelling proposals can be considered as satisfactory solutions for particular problems, it is no

more the case considering the global view. Since:
• The Access Control models ignore the security problems concerning the communication infrastructure to

concentrate on that concerning data access,
• The networks world ignores the access control policy applied on information.

However, in a distributed environment the access control policy of users to data or devices and the security

policy of network elements are correlated. In fact, why protecting a flow if it doesn’t contain restricted access information.
To manage the security at the network infrastructure level, we should take into account the access control policy (example
1). Moreover, contrary to the network security policies, the control access policies are independent of the topology of the
communication infrastructure.

Our initiative to derive a policy consists in:

1) Defining the access control policy to resources for the users,
2) Deducing from these policies the security policy of the network according to its topology.

Example 1:
Consider a CSMA (Carrier Sense Multiple Access) type network (Figure 1) where three devices are connected:

• Device A is used by a person having the Read/Write rights on data found in server C
• Device B is used by a person having no access right to these data.

According to the protocol operation (CSMA), each message sent on the network is broadcasted to all, so it is
necessary to implement security mechanisms to protect the communications between device A and server C. The policy
for securing the flows depends directly on the access control as well as the network infrastructure topology.

Computer A

Computer B

Server C

Figure 1 : Example of a local network

After choosing an access control policy model, we propose a method for modelling the topology of a network
and finally rules allowing to determine if it is or not necessary to employ security mechanisms at the network level for a
given an access control policy and a topology.

2.1 The choice of an access control model
It is important to call back that it is the enterprise needs that determine the security requirements, the models

should thus permit to formulate the security needs compared to the enterprise operation. The RBAC [1, 11] fit very well
in this context because it proposes to formulate the rights of the users according to their place in the enterprise. It consists
then in determining “roles”, where a role corresponds to a set of privileges and responsibilities associated with a particular
activity in the enterprise. We prefer then the role based policies RBAC on other models because the latter do not take into
consideration the notions of group and responsibility which are two important concepts for an enterprise structure.

Moreover [1] proposes a calculus for the RBAC:

• A says s : A makes the statement s,
• A ⇒ B : A is a stronger principal than B ; for example if B represents a group then A may represent a member

or a subgroup of B,
• A serves B : A is a delegate for B,
• A|B : (A|B) says s iff A says B says s,
• A for B : A speaks on behalf of B with appropriate delegation certificates, i.e., (A|B) says s and A serves B,
• A as R : A in role R.

1 We borrow this term from the QoS world to show the need to consider the users and network devices in the security
policy.

30

Example 2: Consider the simple case of Figure 2:
 Faculty

Staff

Students Teachers
Figure 2 : Example of a roles hierarchy

We have 3 groups: Faculty Staff, Students and Teachers. In addition, we have the relations Students ⇒ Faculty
Staff and Teachers ⇒ Faculty Staff. If we consider a PhD student P who is lecturer too then, P ⇒ Students and
P⇒Teachers. Consequently, P can use the roles Rstudents and Rteachers ; this is noted by P as Rstudents and P as Rteachers .

2.2 Modeling the network topology
We reuse the information flow control approach [13,5] to model the communication infrastructure which binds

the users and the data. We take as a hypothesis that the implementations are sure, by Common Criteria or ITSEC
evaluation. Our process consists of modelling security functionalities and interactions between these functionalities
(Figure 3). For example, a stateless firewall has the Filter functionality.

Network Infrastructure

Access Control Rules

User A User B Data

C

: End Flow functionality

: Channel functionality

: Filter functionality

C

: Transform functionality

: Direct functionality

Figure 3 : Modelling of network topology

In the following we will consider the relations:

• The active_Object and passive_Object relations to indicate that an entity is active or passive,
• The active_EF and passive_EF relations to indicate that an EndFlow functionality is active or passive,
• The relation Is_Connected permits to define if there is a connection between two entities.

2.2.1 End Flow functionality
An End Flow (EF) is a functionality specific to the terminal devices, i.e., the servers (data and application) and

the workstations, PC … It transmits flows between the applications/users and the network. We consider two types of End
Flow functionalities:

- Active End Flow functionality (AEF): An EF is said active if any active entity (for instance, users or subjects
in BLP model [2]) is connected to this EF.
Let EF be the set of End Flow functionalities and O be the set of objects in access control model,

)(_),(_)(_,, efEFactiveefsconnectedissObjectactiveOsEFef ⇒∧∈∀∈∀
- Passive End Flow functionality (PEF): An EF is said passive if any passive entity (all that is not active, for

example, objects in BLP model) is connected to this EF.
Let EF be the set of End Flow functionalities and O be the set of objects in the access control model,

)(_),(_)(_,, efEFpassiveefoconnectedisoObjectpassiveOoEFef ⇒∧∈∀∈∀
2.2.2 Channel functionality

The Channel functionality models the physical network. It receives the flow on an interface and retransmits it to
all entities connected to this channel. This functionality may be viewed as the bus architecture (i.e. CSMA). When a flow
is oriented, it is not only received by the addressed destinations but by all of the systems connected to this channel (Cf
example 1).

2.2.3 Filter functionality
The Filter functionality stops or not a data flow. We find this functionality in firewalls, Application Level

Gateways, filtering routers…

2.2.4 Transform functionality
The Transform functionality (TR) accepts a flow “ f “ as input and according to the associated management

rules, it transforms this flow to another flow “f’ ”. This new flow may have properties such as confidentiality, integrity
and authenticity ensuring a certain security level.

2.2.5 Direct functionality
This functionality determines the path that a data flow will follow.

31

For more clearness in the following, we show only the used functionalities. Figure 4 shows how the example of
Figure 1 can be modelled. The devices A, B and C are represented by End Flow functionalities EF A, EF B and EF C.
The Ethernet network is modelled by the channel C1.

User A

User B

Data

C1 EF A

EF B
EF C

Figure 4 : Example 1 modelling

2.3 Relation between application level and network level policies
There is no magical recipe to define the security policy for a given network. Indeed, for the same security

objective multiple solutions can be considered. Securing the data transferred can be achieved using different security
protocols (PPTP, L2TP, IPsec, SSL, TLS, PCT, Secure HTTP, PGP, S/MIME, SSH) following the needs, blocking
access to the network (1,2,3 level VLAN for Ethernet networks, possibilities offered by IP routing, filtering), etc. We
propose a method that allows, starting from an RBAC type access control policy to define recommendations on what
security means to be implemented.

Let us consider a simple example given by the groups of Figure 2. The topology is described in Figure 4. The
data of End Flow EF C contains the file grouping the final exams. The users with role Teachers_Role have the rights to
read and write in the Exam_Doc file. Logically, the users with role Students_Role do not have these rights.

2.3.1 An RBAC based policy specification
Let the following RBAC policy defined in ASL [9] be associated with our example:
/* We associate user A with the Teachers group and user B with the Students group */
 rel(userA,Teachers)
 rel(userB,Students)
/* Those with role Teachers_Role have the Read/Write rights on Exam-Doc */

cando(Exam_Doc, Teachers_Role,+read)
cando(Exam_Doc,Teachers_Role,+write)

/* Definition of the organisation of the enterprise in Figure 2 */
 dirin(Teachers, Faculty Staff)
 dirin(Students, Faculty Staff)
/* Assigning roles to the groups */
 rel(Teachers, Teachers_Role)
 rel(Students, Students_Role)
/* Rules that permit to derive the role rights for a user */
 dercando(object, subject, action) : cando(object, role, action), rel(subject, group), in(group, group’),

rel(group’, role)
/ * Applying rights, our policy is closed2 */
 do(object, subject, action) : dercando(object,subject,action)
 do(object, subject, - action) : not dercando(object,subject,action)

As for the way the channel is specified, when user A reads the Exam_Doc document, the user B can access the
document while crossing the network. The policy goal is then not fulfilled. This error comes up because the channel is not
trusted by the members of the Teachers group. Let us define what a trusted channel is.

2.3.2 Trust property of a channel
In the following we will consider two relations:

• The Role relation provides a group or a user with the associated role,
• The Privilege relation provides a given role with the set of associated privileges.

Role transmission property:
Let EF be the set of EndFlow and U={ ∀ s ∈ O, active_Object(s)}
∀ ef ∈ EF, u ∈ U, Is_Connected(u,ef) ⇒ Role(u) = Role(ef)

Proof: Using the calculus of [1], let U be a user, GR be a group, and R be the role associated with group GR. If “U ⇒ GR”
then U can use the role G so “ U as R”. A user who connects at an EndFlow is noted by “ EF|U ”. We have then
“ EF|(U as R)”. From the associative property of these functions we obtain “ (EF|U) as R ”. Consequently when a user U
of the group GR connects to the EndFlow EF with the role R, EF has also the role R.

2 In a closed policy, what is not explicitly permitted is prohibited.

32

Let now consider two groups, G1 associated with the role R1 and G2 with R2. If the groups G1 and G2 have
concurrent activities, their privileges are consequently different, each one desires to indirectly obtain rights of the other
group. There may be thus a conflict of interest between two groups. In the same way, the group that has more privileges
than the other is in conflict with the latter, but not the inverse. We express this by the definition of the property of conflict
of interests between roles.

Definition of conflict of interests among roles:
Let S1 = Privilege (R1) and S2 = Privilege (R2).
We say that a role R1 is in conflict of interest with role R2 iff ¬ (S1 ⊆ S2).

We define then the relation _Is-In-Conflict_: role * role � Boolean. This relation is:

• Non reflexive : ¬ (R1 Is-In-Conflict R1)
• Non symetric : (R1 Is-In-Conflict R2) ≠ (R2 Is-In-Conflict R1)

In fact, let R1 and R2 such that S1 ⊂ S2 then ¬ (R1 Is-In-Conflict R2) and (R2 Is-In-Conflict R1).
• Intransitive : ¬ ((R1 Is-In-Conflict R2) ∧ (R2 Is-In-Conflict R3) implies (R1 Is-In-Conflict R3))

For example, let R1, R2 and R3 be such that S1 ⊂ S3 and S2 ∩ S3 = ∅ ,
(R1 Is-In-Conflict R2), (R2 Is-In-Conflict R3) but ¬ (R1 Is-In-Conflict R3) because S1 ⊂ S3.

We define the special role Enemy that represents the group of attackers. This role has no privileges,

then: Let R be the set of roles, Rr ∈∀ , r Is-In-Conflict Enemy.
Moreover, a group is never in conflict with any of its subgroups. Indeed, if G ⇒ F, then

Privileges (role(F)) ⊆ Privileges (role(G)), then ¬ (Role(F) Is-In-Conflict Role(G)).

The fact that a role R1 is in conflict of interest with R2 puts constraints on the events between the corresponding
EndFlows. Consequently, due to the modelling of the Channel functionality, the role transmission property and the
property of conflicts among roles, we can define the trusted channel property.

Trusted channel property:
Let C be the set of channels and R be the set of roles,
A channel c ∈ C is said to be trusted for a role r ∈ R and noted trust(c,r) iff

),,(_))('()(_, cefconnectedisefRolerefEFactiveEFef ∧=∧∈∀ r¬ conflictinis __ 'r

For instance, in our example we have ¬ trust(C1, Teachers_Role) and trust(C1, Students_Role).

2.3.3 When to implement an encryption mechanism?
If a channel is not trusted, the information traversing it is subject to attacks. However, not all exposed

information needs to be protected, for example an email telling about holidays. Consequently the implementation of a
security mechanism depends on the information itself. We assign two tags to data: C to indicate that it needs to be
confidential, and I for integrity protection needs. By defining the trusted channel, we thus set two rules for the security
mechanisms in a network:

• Confidentiality rule: It is necessary to apply confidentiality mechanisms to data flow “d ” for a role “ r ” on a
channel “ c ” if the channel “ c ” is not trusted for “ r ” and “ d ” has the tag C.

• Integrity rule: It is necessary to apply integrity mechanisms on a data flow “ d ” for a role “ r ” on a channel “c ”
if the channel “c ” is not trusted for “r ” and “ d ” has the tag I.

User A

User B

Data

C1 EF A

EF B
EF C

 Teachers_Role

Students_Role

Data

C1 EF A

EF B
EF C TR C

TR A

Figure 5 : Securing our example

We set also a last rule:
Confidentiality mechanisms ⇒ Integrity mechanisms ⇒ Authentication mechanisms

This rule upholds since if we prohibit a user from reading a file, logically the access for writing will be prohibited too.
While if we prohibit a user from writing into a file, that does not imply obligatory the prohibition of the user from reading
it. Moreover, setting up control mechanisms with respect to a user and/or a device has no sense except when guarantying
the identity of this user and/or device. Consider again the preceding example, the file Exam_Doc is confidential and its
integrity should be preserved because it contains the final exams. We add then the tags C and I to this file. Moreover:
Teachers_Role Is-In-Conflict Students_Role then the channel is not trusted. Consequently, the data flow between the two
EndFlows EFA and EFC requires confidentiality and integrity mechanisms as shown in Figure 5.

33

We do not identify any more a user by his name but by his role. This is because the role determines the trust
property of the channel. This makes it possible to incorporate all the users who have the same role and thus to reduce the
specification overhead.
We note messages exchange by using [1]:

• TRA for EFA for userA as Teachers_Role says m’ signifies that TRA has modified the message m(C,I) coming
from EFA and sent by userA in a flow m’.

• TRC for EFC for Data as Teachers_Role says m’ signifies that TRC has modified the message m(C,I) coming
from EFC and sent by the data server in a flow m’.

Where m’ = {m(C,I)}Ki,Kc where Ki represents the protection concerning integrity, and Kc protection concerning
confidentiality.

The message m’ corresponds to message m transformed by TRA and TRC. The message m’ has no more the tags
C and I because the new message doesn’t need to be protected. The operator for states implicitly that the identities are
guaranted. It is useful to choose this notation since it allows to easily represent the constraint on the Transform
functionality. For example TR for EF for U as Role says {m(C,I)}Ki,Kc gives, in the case of IPsec protocol [10], information
for configuration:

• “TR ” corresponds to the entity implementing IPsec mechanisms,
• “ (EF for U as Role) ” corresponds to the entities having the right to send and receive messages via IPsec

security mechanisms, for example the configuration of the SPD (Security Policy Database),
• “{m(C,I)}Ki,Kc “ for the security mechanisms to be set up. Thus the configuration of the SAD (Security

Association Database), in our example Kc implies the use of ESP protocol.
Now, we have a tool allowing to determine if a data flow must be protected or not on a given channel. It remains to
implement another tool to decide if a flow should be blocked.

2.3.4 When to implement a filtering rule?
The Filter functionality receives a flow then it allows it to pass or not. Firewalls represent such a functionality.

Let us analyse now how these devices are configured. First, the firewalls are classicaly represented with an IN and an
OUT interfaces. The IN interface corresponds to the enterprise network one, where the OUT interface to the Internet. We
may conclude that IN is associated with trusted networks where OUT with the inverse. Now let us examine why an
administrator would decide to block certain flows while letting others pass.

The OUT to IN flow:
 A firewall will block a flow from OUT towards IN to prevent it modifying the state of the system connected to
IN. That is preventing that the information in this flow write into the system. For example, a filtering rule may be set to
avoid that an attacker raids on a system server. Thus the filtering rules from OUT to IN try to guarantee the system
integrity. We may establish this design by applying the Biba model [3].

The IN to OUT flow:
 A firewall will block a flow from IN to OUT to prevent information from leaving the system to outside. The
goal is then to avoid that the information reach directly (by a program of spyware type or a non-trusted user) or indirectly
(because of an awkwardness) to someone who hasn’t the authorization to get it. So, the filtering rules from IN to OUT
permit guarantying the confidentiality of the system’s information. This result is shown with the BLP model [2].

The system IN is trusted while the OUT is not. From the definition of the relation Trust(c,r), if a channel is
trusted then it is IN, else it is OUT. We thus release the following rules:

• A Filter functionality between two channels C1 and C2 such that Trust(C1,R) and Trust(C2,R), doesn’t block
any flow for the role R,

• A Filter functionality between two channels C1 and C2 such that ¬ Trust(C1,R) and ¬ Trust(C2,R), doesn’t
block any flow for the role R. If a message sent by R has any tag C or I, it is secured because of confidentiality
and integrity rules,

• A Filter functionality between two channels C1 and C2 such that Trust(C1,R) and ¬ Trust(C2,R), C1
represents the IN interface and C2 the OUT interface:

o If message m has the tag C of the form X for … for Z as R says m(C) and it is sent from IN to OUT,
then it should be blocked,

o If message m has at least the tag I of the form X for … for Z as R says m(I) and it is sent from OUT to
IN then it should be blocked.

3. Implementation: SPIDERNet
Based on the properties defined above, we have implemented a prototype called SPIDERNet using PROLOG

language. It takes as an input topology specification and an RBAC policy specification and deduces through two
algorithms where Transform functionalities must be installed and what Filter functionalities must do.
3.1 “Adding security to an EndFlow functionality” Algorithm
Let EF be the set of EndFlow functionalities, TR be the set of Transform functionalities, C be the set of Channel
functionalities.

34

For all ef in EF do
 Let R = {Role(ef)}
 For all r in R do
 Let c∈ C such as Is_Connected(c,ef)
 If trusted(c,r) Then
 If ∃ tr ∈ TR such as Is_Connected(ef,tr) ∧ Is_Connected(tr,c) for the role r Then
 Remove the Transform functionality tr for the role r
 EndIf
 Else
 Add a Transform functionality tr for the role r between ef and c
 EndIf
 EndFor
EndFor

3.2 “Adding Security to a Filter functionality” algorithm
Let EF be the set of EndFlow functionalities, F be the set of Filter functionalities, TR be the set of Transform
functionalities, C be the set of Channel functionalities and R be the set of roles.

For all f in F do
 Let c1,c2 ∈ C, c1 ≠ c2, such as Is_Connected(f,c1) ∧ Is_Connected(f,c2)

 For all r in R do
 If Trusted(r,c1) ∧ Trusted(r,c2) Then
 Add f permits data flow of the form “EF for X says m as r”
 Remove f permits data flow of the form “TR for EF for X says m as r”
 Else
 If ¬ Trusted(r,c1) ∧ ¬ Trusted(r,c2) Then
 Add f permits data flow of the form“TR for EF for X says m as r”
 Remove f permits data flow of the form “EF for X says m as r”
 Else
 If Trusted(r,c1) ∧ ¬ Trusted(r,c2) Then IN�c1 and OUT �c2
 If ¬ Trusted(r,c1) ∧ Trusted(r,c2) Then IN�c2 and OUT �c1
 Add a Transform functionality tr between IN and f for the role r
 Add f permits data flow of the form “TR for EF for X says m as r”
 Remove f permits data flow of the form “EF for X says m as r”
 EndIf
 EndIf
 EndFor
EndFor

3.3 A VPN example
Let us consider a group named VPN which represents a collaborative group of engineers. These persons can

identify themselves with the role VPNRole. Figure 6 represents the network topology specification defined as input and
Figure 7 the result obtained with our prototype.

The policy associated is the following RBAC policy:

cando(data1, VPNRole, +read/write)
cando(data2, VPNRole, +read/write)
cando(data1, OtherRole, +read)

VPNRole

OtherRole

Data1

C1

Internet

VPNRole

C2

C3

VPNRole

Ennemy

Data2

VPNRole
Figure 6 : Topology specification

VPNRole

OtherRole

Data1

C1

Internet

TR1

VPNRole

C2

C3

VPNRole Data2

Ennemy

VPNRole

TR2

TR3

TR5

TR4

ACL1

ACL2

ACL3

Figure 7 : Result obtained with our prototype

We get the relations: VPNRole Is_In_Conflict OtherRole and ¬ OtherRole Is_In_Conflict VPNRole
Then: ¬ Trusted(c1,VPNRole), Trusted(c1,OtherRole), Trusted(c2,VPNRole), Trusted(c2,OtherRole),

35

¬ Trusted(Internet,VPNRole), ¬ Trusted(Internet,OtherRole), Trusted(c3,VPNRole).

Our prototype adds five Transform functionalities (Figure 7) such as: TR1 transforms flows for VPNRole entities, TR2
transforms flows for VPNRole entities, TR3 transforms flows for VPNRole and OtherRole entities, TR4 transforms flows
for VPNRole entities, and TR5 transforms flows for VPNRole entities.It also adds access controls on Filter functionalities:

• ACL1: Permit TR for EF for X says m as VPNRole, and Permit EF for X says m as OtherRole,
• ACL2: Permit TR for EF for X says m as VPNRole, and Permit TR for EF for X says m as OtherRole,
• ACL3: Permit TR for EF for X says m as VPNRole, and Permit TR for EF for X says m as OtherRole.

 Internet

Channel 3

Channel 2

Channel 1

Router

Data Server 1

Router

Router

Data Server 2

VPNRole

OtherRole

VPNRole

VPNRole

VPNRole

VPNRole

VPNRole
Figure 8 : An example of tunnel interconnection

In the case of the use of VPN technology, each Transform functionality for VPNRole corresponds to a tunnel
end-point. We have to establish all the tunnels between all Transform functionalities for VPNRole; for instance TR1 ↔
TR2, TR3 ↔ TR5, TR4 ↔ TR5 (Figure 8).

4. Conclusion
In order to better understand the implementation of security policies, we have shown the lacks at the security

modelling level in a world of information technology composed essentially of distributed applications. We proposed a
notation allowing to specify the topology of a network while referring only to the interactions between security
functionalities. Then we proposed a set of rules and properties implemented in a tool using PROLOG language that
provide recommendations on the security mechanisms to be laid down at the network level, starting from the RBAC
specification of user rights.

While many points have to be clarifyied, we will focus our future work on the following ones:

- The first one is concerning the problems associated when multiple roles are granted to the same user. It is
highly probable that these roles be in conflict. How to take into account such a constraint?

- Our effort is oriented to a unique question: why to use security mechanisms? The relation Is-In-Conflict
doesn’t permit to take into account the importance of each data. Indeed, a role may get in conflict with
another for a data D and not for another data D’. That is why we find it feasible to refine this relation.

- The third point concerns our analysis of the Filter functionality that considers only the information sender
but not the destination. A user, who possesses rights on a particular file, has the right to reach the device on
which the file is placed. Then we have to change our notation for message sending.

5. References
[1] Abadi M., Burrows M., Lampson B., Plotkin G., “A Calculus for Access Control in Distributed Systems”, in ACM

Transactions on Programming Languages and Systems, vol 4, 706 -- 734, 1993.
[2] Bell D., Lapadula L., “Secure Computer Systems: Mathematical foundations and model”, MITRE corporation, Bedford

M.A, 1973.
[3] Biba K., “Integrity constraints for secure computer systems”, USAF Electronic System Division, Bedforf M.A, 1977.
[4] Bonatti P., De Capitani di Vimercati S. , and Samarati P. , “An Algebra for Composing Access Control Policies” in ACM

Transactions on Information and System Security, vol. 5, n. 1, February 2002.
[5] Forcadi R., “Analysis and automatic detection of information flows in systems and networks”, Technical Report UBLCS-

99-16, University of Bologna, Italy, 1999.
[6] Guttman J., “Filtering postures: Local enforcement for global policies”, IEEE Symposium on Security and Privacy,

Oakland CA, USA, 1997.
[7] Guttman J., Herzog A., Thayer F., “Authentication and confidentiality via IPsec”, 6th European Symposium in Computer

Security ESORICS, Toulouse, France, 2000.
[8] Harrison M., Ruzzo W., Ullman J., “Protection in operating systems”, “Communication of the ACM”, 1976.
[9] Jajodia S., Samarati P., Sapino M.L., Subrahmanian V.S., “Flexible supporting for multiple access control policies” ACM

Transaction on Database Sysyem, 2000.
[10] Kent, S., and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC 2401, November 1998.
[11] Lawrence G., “The role of roles”, Computers and Security (12)15--21 , 1993.
[12] Lupu, E. “A Role-Based Framework for Distributed Systems Management”, Ph.D. Dissertation, Imperial College,

Department of Computing, London, U.K, July 1998.
[13] Mantel H., “Information Flow Control and Applications - Bridging a Gap”. FME 2001: Formal Methods for Increasing

Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, 2001.
[14] Samarati P., De Capitani di Vimercati S., “Access Control: Policies, Models and Mechanisms”, Foundations of Security

Analysis and Design, R. Focardi and R. Gorrieri (eds), LNCS 2171, Springer-Verlag. 2001.

36

